Tektronix

COMMITTED TO EXCELLENCE
This manual supports the This manual supports the following
following TEKTRONIX products: software moduies:
8550 TEKTRONIX Assembler Version 4.X
Options Products TEKTRONIX Linker Version 4.X

1A 8300A01 TEKTRONIX LibGen Version 2.X

1B 8300A02 These software modules are compatible with:

1C 8300A04 DOS/50 Version 1.X

1D 8300A05

1E 8300A07

1F 8300A09

1G 8300A10

1H 8300A14

1J 8300A15

1K 8300A20

" 8300426 PLEASE CHECK FOR CHANGE INFORMATION

4nA 2

M 8300428 AT THE REAR OF THIS MANUAL.

8500

MICROCOMPUTER
DEVELOPMENT LAB SERIES

ASSEMBLER
CORE USERS MANUAL

A Series Assemblers

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077 Serial Number

070-3575-01 First Printing JUL 1980
Product Group 61 Revised MAY 1983

LIMITED RIGHTS LEGEND

Software License No.

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data ldentification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, cr(c)used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure: or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE

The software described in this document is licensed software and subject to
restricted rights. The software may be used with the computer for which or with
which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1980 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of Tektronix,
Inc.

Products of Tektronix, Inc. and its subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

I

G
TEKTRONIX, TEK, SCOPE-MOBILE, and ‘E are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8500 MDL A Series Assembler Users

TABLE OF

Page
SECTION 1: LEARNING GUIDE
Introduction ... 1-1
About This Manual i, 1-1
System OVerVIEWottt ittt eieeeiannnn 1-2
Assembler Features........ ciiiiiiiiiiiiiainiian, 1-4
Linker Features.........iiiiiiiiiiiininnnann, .. 156
Library Generator Featurescciiiniininnn... 1-5
Installation ... o e 1-6
Demonstration Run ... iiiiiiiiiiiiiiiiiieaannan, 1-8
Using This Manual With Version 1 1-30
For Continued Learning 1-30
SECTION 2: PROCEDURES
Introduction i 2-1
Assembling Your Programciiiiiiii 2-2
Linking Your Programc0iiiea., 2-4
Buiiding and Maintaining a Library 2-10
SECTION 3: ASSEMBLER INTRODUCTION
Introduction 3-1
Syntax Notationttt 3-1
Assembler Invocation, 3-3
Assembler Input. 3-4
Assembler Execution.............oooiiiiiiiiiiiia.. 3-5
Assembler OQutput 3-6
Object Module .. 3-8
Assembier Listingocviiiiiiiiiiiiin.... 3-6
Sample Source Programcoiun.n. 3-11
SECTION 4: LANGUAGE ELEMENTS
Introduction i 4-1
Statement Fields il 4-1
SYMDbOIS . ..o 4-6
Values e 4-7
Numeric Values i, 4-7
String Values. ..ot 4-9
Conversion FE 4-10
Text Substitution i 4-11
Expressions. ... 412
Introduction 4-12
Hierarchy e e 4-13
OPeratorsc.uvuii ittt 4-13
FUnctions. 4-19

REV FEB 1983

CONTENTS

Page
SECTION 5: ASSEMBLER DIRECTIVES
Introduction i 5-1
Labels ... 5-2
The Assembler Directive Dictionary 53
SECTION 6: MACROS
Introduction 6-1
Macro Expansion Process............... e 6-2
Macro Definition............. ... i 6-3
The MACRO Directivec.vvviiiniinnannan., 6-3
The Macro Body..........oiviiiiniiiiiiiiiann.. 6-3
Macro Body Operators............coooievirennnnnnn... 6-3
The ENDM Directiveooiiii i 6-6
Macro Invocation i 6-6
Parameters i 6-6
Macro Parameter Conventions 6-6
Macro Examples........ ..ot 6-9
SECTION 7: THE LINKER
Introduction i i 7-1
Linker Invocation it 7-1
Simple Invocation. i 7-2
Interactive Invocationcoiiiiiiia... 7-3
Command File Invocation 7-4
Linker Execution...........ooiiiiiiniiininnnnn, 7-5
Linker OUtpUt ... i i e 7-8
Listing File ... i 7-8
Error Messages.coviiiiiieininiiiiinn., 7-11
Linker Commandsccviiiiiiiiiiiii .. 7-14
Linker Command Dictionary................covvuune. 7-15
Command Processing Errors 7-27
SECTION 8: THE LIBRARY GENERATOR
Introduction o 8-1
LibGen Invocation ...t 8-1
Interactive Invocationo, 8-2
Command File Invocationoiviiin... 8-4
LibGen Execution......... iiiiiiiiiiiiiii... 8-5
LibGen OUtpUl + vt e e 5-6
The New Library File................................. 8-6
The Listing . ..ot e 8-6
Error Messages. ...t 8-7
LibGen Commandsoiiiiiiiiiiiinnan, 8-9

Contents—8500 MDL A Series Assembler Users

Page
SECTION 9: PROGRAMMING EXAMPLES
INtroduction e 9-1
Using a Simple Assembler Macro..............c..c. ... 9-2
Creating and Using a Subroutine Library................ 9-6
DOS/50 SVC Generationccivevniiinninnennnn. 9-27
Creating Service Request Blocks 9-27
Generating Service Calls............coiviiiiiit. 9-31
Creating Constant Values................ooiiiiiinnn, 9-32
Save-and-Restore Macrocoooiiiiiiii i, 9-36
Conditional Assembly it 9-38
Using the ‘@' Construct within Macros................ 9-41
The Assembler INCLUDE Directiveout. 9-42

Page
SECTION 10: TABLES
Source Module Character Set..............coooiiien, 10-1
Assembler Directives ... 10-3
ASCH Codes (Hexadecimal).............ooiiiiiiennn, 10-5
Decimai-Hexadecimal-Binary Equivalents................ 10-6
Hexadecimal Addition...........ooiiieviiinninann. 10-7
Hexadecimal Multiplicationccovvev..n 10-8
SECTION 11: TECHNICAL NOTES
SECTION 12: ASSEMBLER SPECIFICS
SECTION 13: ERROR MESSAGES
SECTION 14: GLOSSARY
SECTION 15: INDEX

REV A FEB 1981

8500 MDL A Series Assembler Users

Section 1
LEARNING GUIDE
Page
INtrodUCHION e e 1-1
About This Manual. i i i i i ettt eeaaaannn 1-1
SYStemM OVeIVIBW ... i i i ittt ittt ettt e e e 1-2
Assembler Featuresttt i i e e e 1-4
Linker Featuresottt ittt e e etetienrnenarenaeneensenennnns 1-5
Library Generator Featuresottt ittt iieteeneenneaannnaenns 1-5
Installation i e e e e i e 1-6
Start Up and Set the Date......ot ittt eiin e 1-6
Check the Number of Free Files and Blocks......... et ceieea..- 16
Install the Software (DOS/50 Version 2 Procedure)coiiiiinon.. 1.7
install the Software (DOS/50 Version 1 Procedure) e 1-8
Demonstration RUN i i ittt tteeneaaan s 1-8
Y1 Yo [Tox 4 e o U PP 1-8
g =T o T - [0 o 1-8
Examine the Sample Subroutine and Main Programccviiiiina.n.. 1-10
Assembly Language Statementsiiiiiiiiiiitiii ittt 1-10
Explanation of the Subroutine Source Codecooiiiiiiiiiiiiiiiiit, 1-11
Explanation of the Main Program Source Code........... ... ittt 1-12
Naming Files ... e e e e e e 1-13
Create the Subroutine Source File it 1-14
Assemble the Subroutine and Examine Any Errors it 1-16
Correct the Error in the Subroutine Source Code..............ciiiiiiiiiinennnnn. 1-17
Re-assembie the SUDIOULINE.ottt i i it ae e iieae e 1-18
Examine the Subroutine Listingc.ciiiiiiiiiiiiiiii ittt it iieieenennnnn 1-19
Create the Main Program Source Filettt 1-21
Assemble the Main Programouuiiiiniinet ittt iiaeeteeeeaneaanreennns 1-22
Examine the Main Program Listing........ ... iiiuiiiiniiiiiininnrnreenneannnn 1-23
Link the Object MoOGUIESottt ittt i it ittt ittt e e ctaenannnennans i-25
Examine the Linker Listinguiiiiiiiiiniiiniiieiiiieitnetnaaeeaaeeeanaens 1-25
Load the Executable Object Code into Memoryiviiinniinennenennennnn. 1-28
Summary of Demonstration RUNttt ittt it e e ieaiaananans 1-29
Using This Manual with Version 1 i e i 1-30
For Continued Learning ittt ienennn, 1-30
ILLUSTRATIONS

Fig.

No.
1-1 Assembler programming proCessc..oieiiiiniiniiiiiiiannn 1-3
1-2 Source code for the sample subroutine and program 1-10
1-3 Assembler listing for the sample subroutine.......................... 1-19
1-4 Assembler listing for the sample main program 1-23
1-5 Linker lISting i i i e i e e i it 1-26

REV FEB 1983

8500 MDL A Series Assembler Users

Section 1
LEARNING GUIDE

INTRODUCTION

This Learning Guide gives an overview of features and functions of the TEKTRONIX
Assembler, Linker, and Library Generator. It also presents a simple demonstration for hands-
on experience. The Learning Guide is divided into the following topics:

® About This Manual. Explains how to use this manual with your assembler.

® System Overview. Describes the functions of the assembler, linker, and library
generator. Shows how these system programs interact with each other and with other
programs in the operating system.

® Features of the Assembler, Linker, and Library Generator. Lists features of these
programs that make them especially useful and powerful.

® Installation. Shows how to install the software for your 8080A/8085A assembler from the
installation disk to your DOS/50 Version 2 system disk.

® Demonstration Run. Shows how tc enter and assemble a simple program and
subroutine, and how to prepare the resulting object modules for loading into memory.

® For Continued Learning. Helps you decide where to go next in this manual to
accomplish your own tasks.

ABOUT THIS MANUAL

NOTE

This manual supports DOS/50 Version 2. If you must use DOS/50 Version 1, then you
must convert this manual to support DOS/50 Version 1. Refer to the discussion, “Us-
ing This Manual with DOS/50 Version 17, at the end of this section.

The TEKTRONIX Assembler, Linker, and Library Generator are fundamentally the same for
every microprocessor supported. Each assembler recognizes a different instruction set,
different registers, and different addressing modes; however, you may use the same
assembler directives, operand expressions, symbols, constants, and advanced programming
features with any assembler provided.

The Assembler Specifics section of this manual gives the instruction set and other processor-
dependent information for your microprocessor. The information in the rest of this manuai
applies to all microprocessors supported. Once you have used one version of the TEKTRONIX
Assembier, Linker, and Library Generator, you can program for any microprocessor
supported, as soon as you learn that microprocessor’s instruction set.

The Demonstration Run in this Learning Guide demonstrates the 8080A/8085A assembler.

Demonstration Runs for microprocessors other than the 8080A/8085A are found in the
Assembler Specifics section.

REV FEB 1983 1-1

System Overview Learning Guide-8500 MDL A Series Assembler Users
”

Examples in the Demonstration Run and elsewhere in this manual were created using DOS/50
Version 2, the operating system of the 8550 Microcomputer Development Lab.

Programming examples in the Learning Guide and Assembler Specifics sections are specific
to each microprocessor. All examples in other sections of this manual are completely
processor-independent. Some examples use 8080A instructions, but similar instructions for
any other microprocessor may be substituted without changing the validity of any example.

SYSTEM OVERVIEW

Figure 1-1 shows how an executable program is produced from assembly language source
files.

An assembly language source program may be written by a programmer or may be produced
by a high-level language compiler.

The assembler translates assembly language statements (source code) into machine
instructions (object code) and stores the resulting object module in a file called an object
file.

The linker collects object modules from specified files and determines where in memory each
section of object code will reside. The load file produced by the linker contains the executable
program, which you may copy into memory using the operating system LO command. (Under
certain conditions you may load object modules without linking them. See the Assembler Intro-
duction section of this manual.)

Commonly used subroutines can be developed and assembled separately. Their object code
can then be stored with other useful object modules in a library file. When you include calls
to library routines in your source program, the linker inserts the necessary object modules
into the load file. The library generator creates and modifies library files.

1.2 REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users System Overview

“

Assembly
Language
Source
Files

Assembler

Object

Library Generator jesg——| Files

Library] Linker
File

Load
File

!

LO Command

'

Program
Memory

(3454-1)3575-20

Fig. 1-1. Assembler programming process.

The assembler translates assembly language programs (source code) into relocatable machine language (obiect
coae). Commonly used object modules may be stored together in library files created by the iibrary generator.
The linker combines object modules from specified object files and library files into a load file of executable object
code. The operating system LO command copies object code from load files into program memory.

REV MAY 1983 1-3

Assembler Features Learning Guide-8500 MDL A Series Assembler Users

[P e

ASSEMBLER FEATURES

Here are some important features of the assembler:

® Macros provide a convenient and powerful means for inserting and modifying
frequently used segments of source code.

® Conditional assembly allows a sequence of source code to produce object code that
varies according to specified conditions. This feature reinforces the assembler’s macro
capabilities.

® Linker-related assembler directives allow you to specify in your source code how the
object code will be arranged in memory.

® Operand expressions may contain bit and string manipulations and special assembler
functions as well as the standard arithmetic operations.

e Data constants may be entered as numbers in binary, octal, decimal, or hexadecimal
notation, or as strings of ASCIlI characters enclosed in quotes.

® Each error message contains a brief description of the error, plus an error number that
helps you refer to this manual for more information. You may also write your own error
messages for use in conditional assembly.

@ The assembler listing shows your source code, and the object code, error messages,
and symbol table produced by the assembler. Listing directives allow you to select
which segments of code or types of code are listed.

1-4 REV A FEB 1981

Learning Guide-8500 MDL A Series Assembler Users Linker Features

“

LINKER FEATURES

Here are

some important features of the linker:

® You may link object modules from any number of object files or library files.

® You may define or change any of the following attributes at link time:

—the relocation type of a section of object code;

—the exact or approximate location of a section in memory;

—the values assigned to global symbols;

—the address of the first instruction to be executed.

® You may specify simple linking operations with a single LINK command line. Special or
complex operations can be specified with linker commands entered from the system
terminal or from a command file.

® Each error message contains a brief description of the error and gives the severity of the
error (WARNING, ERROR, or FATAL ERROR). When you enter an illegal command, the
linker indicates which word or parameter is erroneous.

® The linker listing gives a detailed account of linker activity, showing the commands
executed, local and global symbols, memory maps, and statistics.

LIBRARY GENERATOR FEATURES

Here are
® You
® You
® You

® You

some important features of the library generator:

may create libraries of up to 100 modules from any number of object files.
may modify libraries by inserting, deleting, or replacing object modules.
may extract individual object modules into files.

may enter library generator commands from the system terminal or from a

command file.

® Each error message contains a brief description of the error. When you enter an illegal
command, the library generator indicates which word or parameter is erroneous.

® The

library generator listing shows the commands executed, global symbols, and a

summary of library generator activity.

REV A FEB 1981

1-5

installation Learning Guide-8500 MDL A Series Assembler Users

S

INSTALLATION

This procedure describes how to copy the software for the 8080A/8085A assembler from
the installation disc to your DOS/50 system disc. To complete this installation procedure you
need the following items:

® an 8550 Microcomputer Development Lab;
® a DOS/50 Version 2 system disk with a write-enable tab over the write protect slot; and
® an 8080A/8085A assembler software installation disc.

You will need about 5 minutes to complete this installation procedure.

Start Up and Set the Date

Turn on your 85650 system, place your system disc in drive O, and shut the drive door. When
you see the > prompt on your system terminal, place your installation disc in drive 1 and shut
the drive door.

Use the DAT command to set the date and time. For example, if it is 10:55 AM on Nov. 2, 1980,
type:

> DAT 02-NOV-80/10:55:00 AM <CR>

The system will use this information when it sets the CREATION TIME attribute of each file
copied to your system disc.

Check the Number of Free Files and Blocks

This procedure adds about 5 files, consisting of 100 blocks, to your system disc. Enter the L
command to check the number of free files and free blocks on your system disc.

> L <CR>
FILENAME
list of files in your system volume directory

Files used aaa

Free files bbb s~ must be at least5
Free blocks ccc —as—— must be at least 100
Bad blocks [o]

If you have fewer than 5 free files or 100 free blocks, you must delete some files from your
system disc or get a new system disc and start the installation procedure over again.

Install the Software (DOS/50 Version 2 Procedure)

To install the assembler software on your DOS/50 Version 2 system disk, simply type the filespec
of the installation command file:

> /VOL/ASM.8080/INSTALL2 <CR>

REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users Installation

_

If this command does not work, you must create the INSTALL2 instailation command file:
[Step 1: Copy file INSTALL to INSTALL2.]

> COP /VOL/ASM.8080/INSTALL /VOL/ASM.8080/INSTALLZ2 <«CR»>

[Step 2: Use the command file converter (cfcv) program to convert INSTALL2 into the proper
DOS/50 Version 2 format. Before converting, the cfcv program copies INSTALL2 to IN-
STALL2# for backup purposes.]

> cfcev /VOL/ASM.8080/INSTALL2 <CR>

[Step 3: Remove INSTALL2# from the directory.]

> DEL /VOL/ASM.8080/INSTALL2# <CR>
Delete /VOL/ASM.8080/INSTALL2# ?y <CR>

[Step 4: Invoke the DOS/50 Editor, and prepend the t,O0N command line to INSTALL2.]

> EDIT /VOL/ASM.8080/INSTALLZ2 <CR>

** EDIT VERSION x.x
*GET 99 <CR>

** EOF

*BEGIN <CR>
*During this installation procedure, one or more of the
*INPUT <CR>
INPUT:

1,0N <CR>

<CR>

*FILE <CR>

** END OF TEXT

** EOF

>

You may now install the assembler software on your DOS/50 Version 2 disk by typing the
filespec of the installation command file:

> /VOL/ASM.8080/INSTALLZ <CR>

Now proceed to the heading, “Operating System Response”.

instaii the Sofiware (DOS/50 Version 1 Procedure)

To install the assembler software on a DOS/50 Version 1 disk, type:

> /VOL/ASM.8080/INSTALL <CR»>

Now proceed to the following discussion, “Operating System Response”.

REV FEB 1983 1-7

Demonstration: Preparation ' Learning Guide-8500 MDL A Series Assembler Users
’

Operating System Response
The operating system responds with the following message:

% During this installation procedure, one or more of the
¥ following messages may appear. IGNORE THESE MESSAGES:
*

Error 6E - Directory alteration invalid

Error TE - Error in command execution

Error 1D - File not found

If any OTHER error message appears, see your
Users Manual for further instructions.

If no other error message appears, you'll receive a
message when the installation procedure is complete.

o % O OK K K K K K K kK

, OFF

The installation process generates a number of error messages that do not affect the success
of the installation. However, if any message OTHER than 6E, 7E, or 1D appears: check that
you are using the correct discs, that a write-enable tab is present on your system disc, and
that there are at least 100 free blocks and 5 free files on your system disc; then, begin the
installation procedure again. If the error message appears again, copy down the error and
contact your local Tektronix Field Office.

“t,OFF” is the first command in the instaliation command file and is dispiayed before it is execut-
ed. This command suppresses subsequent output to your system terminal (except error mes-
sages) until the installation command file finishes executing.

Within about 5 minutes, the installation command file will finish and your system termi-
nal will display the following message:

¥ Your installation has been successfully completed.
>

Your software is now installed, and you can:
® remove your discs and turn off your 8550 system, or
® install more software on your system disc, or
® continue with the 8080A/8085A Assembler Demonstration Run that follows in this
section. If you do so, you do not have to restart the system or reset the date.

You can install more than one assembler on your DOS/50 system disc. To tell the operating
system which software to use at the time of assembly, use the SEL command. For example:

> SEL 8080 <CR>
selects the 8080A software.

NOTE

The 8080A/8085A assembler supports both the 8080A and 8085A emulators. SEL
8080 or SEL 8085 will specify the 8080A/8085A assembler software.

1-8 REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Preparation

“

DEMONSTRATION RUN

Introduction

This Demonstration Run shows you how to enter, modify, assemble, link, and load a simple
program and subroutine. This demonstration uses the 8080A/8085A assembler. If you have
an assembler other than the 8080A/8085A, refer to the Assembler Specifics section of this
manual for a Demonstration Run that is parallel to this one.

ic information and experience you

s 0
brary generator.

i (SR R10 1)

o begin using the assembler, linker, and

H H H H v tha ha
e of this demonstration is to give you the ba
li

For your convenience, the sample program and subroutine are short and trivial. Only a few
features of the assembler and linker are demonstrated, and the library generator is not
discussed.

This Demonstration Run uses the following conventions:
1. Underlined—Underlined characters in a command line must be entered from your
system terminal. Those characters not underlined are system output.
2. <CR>—Each command line ends with an end-of-line character. The end-of-line character
for the 8550 is a carriage return (ASCII code 13). When a carriage return is to be entered,
the symbol <CR> is used.

Preparation

To do this Demonstration Run you should have a basic understanding of the 8550 Microcom-
puter Deveiopment Lab and the DOS/50 Editor. if you need to review how the 8550 and its
editor work, refer to the Learning Guide in the 8550 System Users Manual (DOS/50 Version 2)
and the 8550 Editor Users Manual.

You will need about 60 minutes to complete this Demonstration Run.

Start up your 8550 system. Make sure your system disc has the 8080A/8085A assembler
software installed and a write-enable tab over the write-protect slot. Insert the system disc
into drive O.

Use the DAT command to set the date and time. For example, if it is 11:05 AM on Nov. 3, 1980,
enter:

> DAT 03-NOV-80/11:05:00 AM <CR>

Next, enter the USER command to establish ME as the owner of the files you will create:

> USER, ,ME <CR>

REV FEB 1983 1-9

Demonstration: Examine Program Learning Guide-8500 MDL A Series Assembier Users

F

1-10

Use the SEL command to tell DOS/50 to use the 8080A/8085A assembler software:

> SEL 8080 <CR>
(Notice that the A in 8080A is not included in the SEL command line.)

SEL 8085 also specifies the 8080A/8085A assembler software.

Examine your disc directory to make sure you have at least 25 blocks available for the files
created during this demonstration:

> L <CR>
FILENAME

list of files in your system volume directory

Files used aaa
Free files bbb =s——— must be at least 20
Free blocks ccc -e-s——— must be atleast 25
Bad blocks o]

If there are not at least 25 blocks or 20 free files available on your system disc, you must
make some room by copying some of your non-system files to another disc.

Enter the following commands to create an empty directory ASM.DEMO and make it the
current directory:

> CREATE ASM.DEMO <CR>

> USER ASM.DEMO <CR>

Examine the Sample Subroutine and Main Program
Figure 1-2 lists the subroutine and program you will enter, assemble, link, and load in this
Demonstration Run.

The subroutine performs a trivial task: it outputs the ASCIl character stored in the
accumulator to the port whose number is specified by the symbol PORTN.

The main program stores a character in the accumulator, calls the subroutine to output the
character, and then halts.

You can think of the subroutine as a carefully prepared component of a major programming
project. The main program can be viewed as a quickly written test for the subroutine.

REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Examine Program
. ___|]

Subroutine OQUTSUB:

TITLE "SAMPLE SUBROUTINE"
NAME SUBSMOD
GLOBAL PORTN,OUTSUB
SECTION SUBS1
; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.

OUTSUB OUT PORTN ; OUTSUB STARTS HERE.
RET ; RETURN TO PROGRAM.
END

Main Program:
GLOBAL PORTN,OQUTSUB

PORTN EQU 15 ; PORT = 15

START MVI A,m2n ; CHARACTER = "2"
CALL OUTSUB ; SEND "2?" TO PORT 15...
HLT ; ... AND STOP.
END START

3454-2

Fig. 1-2. Source code for the sampie subroutine and program.

Subroutine OUTSUB outputs a single ASCIl character to port number PORTN. The main program
specifies a port number and a character and calls OUTSUB to output the character. The subroutine and
main program are discussed in more detail later in this section.

Assembly Language Statements

An assembler source module is made up of assembly language statements. There are three
types of assembly languagé statements:

® An assembly language instruction is translated by the assembler into an 8080A
machine instruction.

® An assembler directive indicates a special action to be taken by the assembler.
Assembler directives define data items, constants, and variables; provide information to
the linker; control macros and conditional assembly; and specify options for the
assembler and linker listings.

® A macro invocation is replaced by the statements of the macro it invokes. (Macro
invocations are not discussed in this demonstration.)

Each assembly language statement has four fields. Each field may vary in width, and certain
fields may be blank. However, the fields always occur in the following. order:

1. The labe! field. The labe! field always begins in column 1 of the statement. The label
allows the statement to be referenced by other statements. The label usually
represents the address of the instruction or data iterm represented by the statement.

2. The operation field. The word in the operation field indicates the type of action to be
taken by the assembler. The word may be an assembler directive, an 8080A
mnemonic, or the name of a macro. If the word is an 8080A mnemonic, the assembler
translates the statement into a machine instruction.

3. The operand field. The operand field completes the assembly language statement.
Most assembler directives and 8080A instructions contain one or more operand
expressions. The type and number of operands depend on the operation.

REV FEB 1983 1-11

Demonstration: Examine Program Learning Guide-8500 MDL A Series Assembler Users
L

4. The comment field. Comments are used for program documentation only; they are
ignored by the assembler. A semicolon (;} indicates that the remainder of the line is a
comment. A comment may follow the operand field, or may begin with a semicolon in
column 1 and take up an entire source line.

Explanation of the Subroutine Source Code

The following text explains each statement in the sample subroutine (shown in Fig. 1-2). The
two statements preceding the END statement are 8080A instructions. The rest of the
statements are assembler directives.

TITLE "SAMPLE SUBROUTINE"

The phrase "SAMPLE SUBROUTINE” will appear in the heading on each page of the
assembler source listing.

NAME SUBSMOD

When the subroutine is assembled, the resulting object module will be named “SUBSMOD".
GLOBAL PORTN,OUTSUB

PORTN and OUTSUB are declared as global symbols, since each symbol is given a value in
one module and referred to in another module. For example, OUTSUB is defined in the
subroutine and referred to in the main program. PORTN is called an unbound global because
it is not defined anywhere in this module. OUTSUB is a bound global.

SECTION SUBS1

Each object module is composed of one or more sections. The linker treats each section as a
separate unit: sections from the same module may be placed in different ends of memory.
The one section in object module SUBSMOD will be called SUBS1. (If you were to add other
sections to this source module, they might be called SUBS2, SUBS3, and so on.)

The asseinbier direciives SECTION, COMMON, and RESERVE each deciare a different type of
section, and may also specify restrictions on the relocatability of the section. When no
restriction is specified, the section is byte-relocatable; that is, the section may begin at any
byte in memory. The Linker section of this manual contains an explanation of the five
attributes of a section: name, section type, relocation type, size, and memory location.

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.

This is a comment.
OUTSUB 0QUT PORTN ; OUTSUB STARTS HERE.

This 8080A instruction outputs the contents of the accumulator to port number PORTN. The
symbol OUTSUB becomes defined as the address of this instruction, which is the first
instruction in the subroutine. A program that contains the instruction CALL QUTSUB can
execute this subroutine.

RET ; RETURN TO PROGRAM.

1-12 REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Naming Files
o e]

This 8080A instruction returns contro! to the calling program.
END

This assembler directive marks the end of the source module.

Explanation of the Main Program Source Code

The following text explains each statement in the sample main program {shown in Fig. 1-2).
The program contains three assembler directives (GLOBAL, EQU, and END) and three 8080A
instructions (MVI, CALL, and HLT).

GLOBAL PORTN,OQUTSUB

As in the subroutine, PORTN and OUTSUB are global symbols. However, in this module
PORTN is a bound (defined) global while OUTSUB is an unbound (undefined) global. The
GLOBAL statements allow the twoe modules to share the number of the port and the address
of the subroutine.

PORTN EQU 15 : PORT = 15

This assembler directive assigns the value 15 to the symbol PORTN. “PORTN” becomes
synonymous with the constant “15".

START MVI A,"?" ; CHARACTER = n2n

This 8080A instruction stores the hexadecimal value 3F (the ASCII code for question mark) in
the accumulator. This statement is given a label, “START"”, so the END statement may refer
to it

ar e
?

CALL OUTSUB ; SEND ™
This 8080A instruction transfers control to the instruction labeled OUTSUB in the subroutine
module. The subroutine sends the question mark to port 15.

—-

TG PORT 1i5...

HLT ; ... AND STOP.

Control returns from the subroutine to this 8080A instruction. The HLT instruction halts
program execution.

END START

This assembler directive terminates the source medule and indicates that program exe-
cution should begin with the instruction labeled “START”. START is called the trans-
fer address. The transfer address is passed through the assembler and linker tc the
operating system LO (Load) and G (Go) commands.

Notice that this program source module does not contain a TITLE, NAME, or SECTION
directive. The following default conditions result:

® No special title will appear in the page heading of the source listing.
® The object module will be called *NONAME*.

REV FEB 1983 1-13

Demonstration: Create Subroutine Learning Guide-8500 MDL A Series Assembler Users
T S

& The one section in *NONAME* will be given a default name, section type, and
relocation type.

Naming Files

This Demonstration Run produces several files. To give each file a name that reflects its contents
and importance, we will use the file naming standards described in the Files section of the 8550
(DOS/50 Version 2) System Users Manual:

® The first part of the file name is an optional descriptive name followed by a period.
® The last part of the file name is a 3- or 4-character identifier that reflects the file type.

The following files will be produced:

File Name Description How Created
SUB.ASM SUBroutine ASseMbler source file by you
SUB.OBJ SUBroutine OBJect file by assembler
SUB.ASML SUBroutine ASseMbiler List file by assembler
PROG.ASM PROGram ASseMbler source file by you
PROG.OBJ PROGram OBJect file by assembler
PROG.ASML PROGram ASseMbiler Listing file by assembler
LOAD Program LOAD file by linker
LNKL Program LiNKer Listing file by linker

Create the Subroutine Source File
The DOS/50 Editor helps create and modify source files. The Editor Users Manual contains a
complete explanation of the editor.

How to Correct Typing Mistakes in the Editor
If you notice a mistake in your command line, you have two ways of correcting it before vou
enter a carriage return: delete the entire line and start again, or correct the characters one-
by-one.
® To delete the entire line, press your terminal’s ESC (escape) key once. You may then
reenter the line.
® To delete characters one-by-one, press the BACKSPACE or RUBOUT key. Either key will
backspace the cursor and erase the deleted character.

Start Editing

The EDIT command invokes the DOS/50 Editor. The file name in the EDIT command
indicates the file to be edited. Enter the following line to begin the editing session that
creates SUB.ASM, the subroutine source file:

> EDIT SUB.ASM <CR>
¥%¥ EDIT VERSION x.x

¥% NEW FILE
*

1-14 REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Create Subroutine
L]

The asterisk {*) is the editor prompt character. When you see the asterisk, you may enter the
next editor command.

An assembly language program is easier to read if the statement fields are aligned as in Fig.
1-2. The editor has tab stops at columns 8, 16, 24, 32. 40, 48, 56, and 64, which are
convenient for aligning assembly language text. For example, in Fig. 1-2, the operation field
begins in column 8, the operand field begins in column 16, and the comment field begins in
column 24.

Enter the following command line to declare the dollar sign as the editor tab character, and
to enable the spaces created by the tab to be output:

¥TAB $:XTABS ON <CR>

The editor will interpret every dollar sign you enter as a skip to the next tab stop.

Enter input mode and type in the subroutine. Be sure to misspell “"GLOBAL" in the third line
of text. This deliberate typing error will be used to illustrate features of the assembler and
editor.

¥INPUT <CR>
INPUT:
$TITLE$"SAMPLE SUBROUTINE"™ <CR>
$NAME$SUBSMOD <CR>
$GLOABL$PCRTN, OUTSUB <CR>
SUBS1 <CR>
SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER. <CR>
OUTSUBOUTPORTN$ OUTSUB STARTS HERE. <CR>
$RET$$;, RETURN TO PROGRAM. <CR>
$END <CR>

<CR>
*

When you enter the carriage return on the empty line, input mode is terminated and the
editor prompt (*) appears.

The text you entered is stored in the editor workspace. To display the workspace contents
from beginning to end, enter the following command:

*TYPE B-E <CR>
TITLE "SAMPLE SUBROUTINE"
NAME SUBSMOD
GLOABL PORTN,OUTSUB
SECTION SUBS1
; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.

OUTSUB OUT PORTN ; OUTSUB STARTS HERE
RET ; RETURN TO PROGRAM.
END

*

Now enter the FILE command to copy the text in the workspace out to the new source file
and end the editing session:

*¥*FILE <CR>
¥¥ END OF TEXT

>
The system prompt (>} indicates that you are out of the editor and may enter another

DOS/50 command.

REV FEB 1983 1-15

Demonstration: Assemble Subroutine Learning Guide-8500 MDL A Series Assembler Users
N

Assemble the Subroutine and Examine Any Errors

The operating system command ASM invokes the assembler and specifies the source file(s)
to be assembled and the object and listing files to be produced. The ASM command has the
following format:

ASM, obijfile, lisfile, soufile [, soufile] . . .

objfile—filespec of object file to be produced
lisfile—filespec of listing file to be produced
soufile—filespec(s) of source file(s) to be assembled

To scan source file SUB.ASM for errors, enter the following command:

> ASM,,,SUB.ASM <CR>

Omitting the filespecs of the object and listing files has two advantages:
1. The assembler runs faster because it produces no object code or listing.
2. The ASM command line is shorter.

You may want to omit these filespecs from your ASM command line whenever you suspect
that your source code contains errors.

The assembler responds as follows on your system terminal:

Tektronix 8080/8085 ASM Vx.x
¥%%¥%¥ pPass 2

00003 0000 000000 GLOABL PORTN,OUTSUB
¥%%¥%% FRROR 039: Invalid operation code
00006 0000 D300 OUTSUB OUT PORTN ; OUTSUB STARTS HERE.
¥¥%%¥% FRROR 074: Undefined symbol
8 Source Lines 8 Assembled Lines 47415 Bytes available
2 ERRORS 2 UNDEFINED SYMBOLS
>

The assembler’s response can be interpreted as follows:

Tektronix 8080/8085 ASM Vx.x
The assembler announces itself as it begins executing. The assembler reads through your
source file twice. The first time through (Pass 1), the assembler makes a list of symbols that
appear in the source code and tries to assign an address or other value to each symbol.

#%X%¥¥ Pgss 2

The assembler begins its second pass through your source file. During Pass 2, the assembler
produces the object and listing files and displays error messages and statistics.

1-16 REV A FEB 1981

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Correct Subroutine
L |

00002 0000 000000 GLOABL PORTN,OUTSUB
¥%%%¥¥ ERROR 039: Invalid operation code

The assembler cannot transiate the above statement because "GLOABL" is not an 8080A
mnemonic, an assembler directive word, or the name of a macro. The erroneous source line
and the error message would appear in the listing (if any) just as they appear on the system
terminal. The three numbers to the left of the statement will be explained when you examine
an assembler listing later in this demonstration run.

00006 0000 D300 OUTSUB OUT PORTN ; OUTSUB STARTS HERE.
¥%%%¥% FRROR O74: Undefined symbol

Because the assembler did not understand the GLOBAL statement, it does not know that
PORTN is a global symbol. The assembler expects PORTN to be defined in this module.

8 Source Lines 8 Assembled Lines 47718 Bytes available
2 ERRORS 2 UNDEFINED SYMBOLS

These lines summarize the assembler’s activities. There are eight lines of code in your
source file. The number of assembled lines differs from the number of source lines only in
programs that contain macros or conditional assembly.

The “Bytes available” message indicates the amount of Program Memory not used by the
assembler. If the "Bytes available” figure is ever less than 1000 or so, you may need to divide
your source module into smaller modules before you add any more statements.

The two errors, already discussed, produced the two undefined symbols GLOABL and
PORTN.

Correct the Error in the Subroutine Source Code
Both errors detected by the assembler arose from the misspelling of "GLOBAL" in line 3 of

the source file, SUB.ASM. Invoke the editor so that you may correct the misspelling:

> EDIT SUB.ASM <CR>

*%¥ EDIT VERSION x.x
*

The editor command GET brings text into the workspace from the file being edited. Specify a
large number of lines (99) to assure that the entire file is brought into the workspace:

*GET 99 <CR>
¥¥ LOF
*

The message **EOF** indicates that the end of the input file has been reached.

Enter the following command line to find the line that contains the misspelling.

¥BEGIN.:FIND /GLO/ <CR>
GLOABL PORTN, OUTSUB

The BEGIN command moves the workspace pointer to line 1. Starting at that line, the FIND
command searches for the character string “GLO" and moves the pointer to the first line that
contains the string.

REV A FEB 1981 1-17

Demonstration: Correct Subroutine Learning Guide-8500 MDL A Series Assembler Users

O S 00

Now the workspace pointer is at the line you want to modify. Use the SUBSTITUTE command
to reverse the letters "A” and "B” in "GLOABL™:

¥SUB /AB/BA/ <CR>
GLOBAL PORTN,OUTSUB

The modified line is displayed.

As before, the FILE command copies the edited source code to the source file and closes the
editing session:

¥*FILE <CR>
¥¥ END OF TEXT
¥% EOF

Re-Assemble the Subroutine
Enter the following command to create an object file (SUB.OBJ) and an assembiler listing file
(SUB.ASML) from the subroutine source file:

> ASM SUB.OBJ SUB.ASML SUB.ASM <CR>

Tektronix 8080/8085 ASM Vx.x

¥¥%%¥¥% pass 2
& Source Lines 8 Assembled Lines 474217 Bytes available
>>> No assembly errors detected <<K

This time the assembler finds no errors.

1.18 REV A FER 1981

Learning Guide-8500 MDL A Series Assembier Users
[]}

Examine the Subroutine Listing
In order to examine the assembler listing stored on file SUB.ASML, copy the file to your line
printer:

> COP SUB.ASML LPT <CR>

If you have no line printer, enter the following command to list the file on your system
terminal. (Remember that you may use CTRL-S to suspend display and CTRL-Q to resume
display on a CRT terminal.)

> CON SUB.ASML <CR>

Figure 1-3 shows the listing of the sample subroutine.

assembier user-defined
identification title
e ™ et — e, N
Tektronix 8080/8085 ASM Vx.x SAMPLE SUBROUTINE Page 1
00002 NAME SUBSMOD
00003 GLOBAL PORTN,OUTSUB
ﬁg:;;‘;e 00004 SECTION SUBS1 :
00005 ; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER.
00006 0000 D300 > OUTSUB OUT PORTN ; OUTSUB STARTS HERE.
00007 0002 C9 RET ;+ RETURN TO PROGRAM.
00008 END
S—— — e — T T ——— T — N~ ——
source object source code comments
file code
line
number
address
Tektronix 8080/8085 ASM Vx.x Symbol Table Page 2
Scalars
symbol A —eeem 0007 B ~==-- 0000 C ----- 0001 D -=--- 0002 E --——-- 0003
Y H-e--- 0004 L ----- 0005 M ceeee 0006 PSW --- 0006 SP ---- 0006
table
SUBS1 Section (0003)
OUTSUB - 0000 G
PORTN Unbound Global
e Y 8 Source Lines 8 Assemopled Lines 4j4u) bytes avaliliapie
statistics {
>>> No assembly errors detected <<<
3454-3

Fig. 1-3. Assembler listing for the sample subroutine.

The command ASM SUB.OBJ SUB.ASML SUB.ASM produces this listing file from the subroutine source file, The
command COP SUB.ASML LPT copies the listing file to the line printer.

REV FEB 1983

Demonstration: Subroutine Listing

1-19

Demonstration: Subroutine Listing Learning Guide-8500 MDL A Series Assembler Users

Every assembler listing has two parts: the source listing and the symbol table. Each page of
the listing begins with a standard page heading.

The Source Listing

Page 1 of your assembler listing contains the source listing. The heading includes the words
"SAMPLE SUBROUTINE", which you supplied with the TITLE directive.

Each line of the source listing contains the following information:
1. the line number (decimal);
. the memory location (hexadecimal) of the object code generated (if any);
. the assembled object code (hexadecimal),
. a relocation indicator (>) if the object code may be adjusted by the linker;

. a text substitution indicator (+) if the assembler has modified the source statement
(this demonstration gives no examples of text substitution);

o b~ WN

6. the source statement.

If any statement contains an error, the appropriate error message appears directly after the
statement.

Examine each line of your source listing:
® Line 1 (the TITLE directive) is not printed because it is a listing contro!l directive.

® Lines 2, 3, 4, and 8 are assembler directives that produce no object code. The
information they provide is stored in special areas of the object module.

® Line b is a comment.
® Lines 6 and 7 are 8080A assembly language instructions:

— The 8080A instruction OUT PORTN produces the two-byte machine instruction D300.
D3 is the hexadecimal operation code for the OUT instruction. The dummy value 00
will be used for the port number until the linker supplies a value for PORTN. The
machine instruction D300 is stored in bytes 0000 and 0001 of section SUBS1.

—The 8080A instruction RET produces the one-byte machine instruction C9, which is
stored in byte 0002 of section SUBS1.

The Symbol Table

Page 2 of your listing contains the symbol table, which indicates the value and type of each
symbol in your source code.

The assembler symbol table is divided into the following categories:
1. Strings and macros
2. Scalars (numeric values other than addresses; includes undefined symbols)
3. Sections (and addresses within each section)
4. Unbound globals

1-20 REV A FEB 1981

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Create Program

5 —

Examine the symbol table in your listing:

1. The strings and macros table is omitted, since the sample subroutine uses neither
string variables nor macros.

2. The scalars table lists every scalar in the symbol list and the value associated with
each scalar. The sample subroutine defines no scalars, but the names of the 8080A
registers are pre-defined symbols and thus always appear in the symbol list.

3. SUBS1 is the only section in the sample subroutine. The line

SUBS1 Section (0003)

tells you the following attributes of section SUBS1:
® its name: SUBS1;
® ts section type: SECTION (as opposed to COMMON or RESERVE);

® its relocation type: byte-relocatable (the default relocation type is implied when no
other relocation type is specified);

its length: 3 bytes

OUTSUB has the value 0000 because OUTSUB is the address of the first byte in section
SUBS1. The letter "G” indicates that OUTSUB is a global symbol.

4. PORTN is the only unbound (undefined) global symbol in the subroutine.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

When there are errors in your source code, the two most usefu! parts of your listing are the
source listing and the scalars table. The source listing contains the error messages and
shows the erroneous lines in context with the rest of the program. The scalars table flags
undefined symbols with the value "****".

Create the Main Program Source File

Now that you have created, corrected, and assembled the sample subroutine, it is time to
create the main program that uses the subroutine. Enter the following command to begin the
editing session that creates the main program source file, PROG.ASM:

> EDIT PROG.ASM <CR>

% EDIT VERSION x.x
% NEW FILE
*

REV A FEB 1981 1-21

Demonstration: Assemble Program Learning Guide-8500 MDL A Series Assembler Users

Declare the editor tab character and type in the source code, just as you did for the
subroutine. (This time, however, don’t include any typing errors.)

¥TAB $:XTABS ON <CR>

¥TNPUT <CR>

INPUT:

$GLOBAL$PORTN, QUTSUB <CR>

PORTNEQU15$%; PORT = 15 <CR>
START$MVISA,"?"$; CHARACTER = "?" <CR>
$CALL$OUTSUBS$; SEND "?" TO PORT 15... <CR>
SHLT$$; AND STOP. <CR>

SEND$START <CR>

<CR>

*

The editor interprets every dollar sign as a skip to the next tab stop. Inspect the text you have
entered to be sure there are no errors:

¥*TYPE B-E <CR>

~—— GLOBAL PORTN,OUTSUB

PORTN EQU 15 : PORT = 15

START MVI A,mon CHARACTER = "2"
CALL OUTSUB ; SEND "?" TO PORT 15
HLT ; ... AND STOP.
END START

*
Enter the FILE command to save the text onto the source file and return to DOS/50:

*FILE <CR>
¥¥ END OF TEXT

>

Assemble the Main Program

Enter the following command line to create an object file (PROG.OBJ) and a listing file
(PROG.ASML) from the main program source file:

> ASM PROG.OBJ PROG.ASML PROG.ASM <CR>

Tektronix
%%¥%% pggs 2
6 Source Lines 6 Assembled Lines 47424 Bytes available
>>> No assembly errors detected <K<K

808078085 ASM Vx.x

The main program contains no errors.

1-22 REV A FEB 1981

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Program Listing

Examine the Main Program Listing
Copy the assembler listing to the line printer or to the system terminal:

> COP PROG.ASML LPT <CR>

or
> CON PROG.ASML <CR>

Tektronix 8080/8085 ASM Vx.x Page 1
00001 GLOBAL PORTN,OUTSUB
source /00002 000F PORTN EQU 15 ;5 PORT = 15
listing Y 00003 0000 3E3F START MVI A,"2" ; CHARACTER = "2"
00004 0002 CDOOOO > CALL OUTSUB ; SEND "2?"™ TO PORT 15...
00005 0005 76 HLT ; ... AND STOP.
00006 0000 > END START
Tektronix 8080/8085 ASM Vx.x Symbol Table Page 2
Scalars
A —eeun 0007 B -=--- 0000 C == 0001 D -=---- 0002 E --o-- 0003
symbol H —wce- 0004 | 0005 M ----- 0006 PORTN - O0O0OF G PSW --- 0006
table SP ---- 0006
%PROGOB (default) Section (0006)
START -- 0000
OUTSUB Unbound Global
(A Spource Lines £ Assemhlad lines 7424 Rvtes available
statisticsi ource Lines 6 Assembled Lines 47424 RByte
>>> No assembly errors detected <<<
3454-4

Fig. 1-4. Assembler listing for the sample main program.

The command ASM PROG.OBJ PROG.ASML PROG.ASM produces this listing file from the main program source
file. The command COP PROG.ASML LPT copies the listing file to the line printer.

Compare the listing of the sample main program (Fig. 1-4) with the listing of the sample
subroutine (Fig. 1-3).

The Source Listing

Page 1 of your assembler listing contains the source listing. Notice that there is no user-
defined title for the program listing: the source code contains no TITLE directive.
Examine each line of the program source listing.

1. As in the subroutine, the GLOBAL statement produces no object code.

REV FEB 1983 1-23

Demonstration: Program Listing Learning Guide-8500 MDL A Series Assembler Users
S

2. The EQU statement assigns the value 15 (O0OOF hexadecimal) to the symbol PORTN.
The symbol PORTN and its value are stored in the global symbol block of the program
object module. At link time, the value of PORTN will be substituted into the OUT
instruction in the subroutine.

3. The 8080A assembly language instruction MVI A/"?"” generates the machine
instruction 3E3F. 3E is the operation code for MVI A and 3F is the ASCIl code for the
question mark. The machine instruction 3E3F is stored in bytes 0000 and 0001 of the
main program.

4. The 8080A assembly language instruction CALL OUTSUB generates the machine
instruction CDOOOO in bytes 0002 through 0004. CD is the operation code for the
CALL instruction. 0000 is a dummy value: the address of OUTSUB will be provided at
link time.

5. The 8080A assembly language instruction HLT produces the one-byte machine
instruction 76 in byte 0005 of the main program.

6. The END statement specifies that the transfer address is 0000, the address of the MVI
instruction. The transfer address will be adjusted if this section of object code is not
loaded at the beginning of memory.

The Symbol Table
1. The strings and macros table is again omitted because it is empty.

2. The scalars table lists the usual pre-defined scalars, plus the symbol PORTN. The
value of PORTN is OOOF hexadecimal. The “G"” indicates that PORTN is a global
symbol.

3. Because the main program source code contains no SECTION directive, the section
produced by this assembler run is given the following default attributes:

® name: %PROGOB (derived from the name of the object file);
® section type: SECTION;
® relocation type: byte-relocatable.
Section %PROGOB contains six bytes of code. START is the address of the first byte of
the section.
4. OUTSUB is the only unbound (undefined) global symbol in the main program.

The statistics at the bottom of the symbol table are the same statistics that appeared on the
system terminal when the assembler finished execution.

1-24 REV A FEB 1981

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Linker Listing

L

Link the Object Modules

Now both the subroutine and the main program have been translated into machine language.
In order for the subroutine and main program object modules to communicate with each
other, they must be linked. The linker performs the foliowing tasks in creating a load file of
executable object code:

@ It finds a block of memory for each section in the specified object files.
® It adjusts addresses to reflect reiocation of sections.
® |t provides values for unbound globals.

Enter the following command to create a load file (LOAD) and a linker listing file (LNKL) from
your two object files:

> LINK LOAD LNKL PROG.OBJ SUB.OBJ <CR>

The linker responds as follows:
8550 LINKER Vx.x

NO ERRORS NG UNDEFINED SYMBOLS
2 MODULES 2 SECTIONS
TRANSFER ADDRESS IS 0000

Examine the Linker Listing
Copy the linker listing file to the line printer or system terminal:

> COP LNKL LPT <CR>

> CON LNKL <CR>

Figure 1-5 shows the linker listing.

REV FEB 1983 1-25

Demonstration: Linker Listing Learning Guide-8500 MDL A Series Assembler Users

ol e e]

TEKTRONIX 8080/8085 LINKER V x.x GLOBAL SYMBOL LIST PAGE 1
%PROGOB 0000 QUTSUB 0006 PORTN 000F SUBS1 0006
TEKTRONIX 8080/8085 LINKER V x.x MODULE MAP PAGE 2

FILE: PROG.OBJ
MODULE: *NONAME*
%PROGOB SECTION BYTE 0000-0005
FILE: SUB.OBJ
MODULE: SUBSMOD

SUBS1 SECTION BYTE 0006-0008
OUTSUB 0006

TEKTRONIX 8080/8085 LINKER V x.x MEMORY MAP PAGE 3
0000-0005 %PROGOB SECTION BYTE
0006-0008 SUBST SECTION BYTE
NO ERRORS NO UNDEFINED SYMBOLS
statistics 2 MODULES 2 SECTIONS
TRANSFER ADDRESS IS 0000

3454-5

Fig. 1-5. Linker listing.

The command LINK LOAD LNKL PROG.OBJ SUB.OBJ produces this linker listing file. The command COP LNKL
LPT copies the listing file to the line printer.

The linker listing contains three parts:

1. The global symbol list (page 1 of your listing) iists the vaiue assigned to each giobai
symbol. The name and starting address of each section are included. Undefined
globals are flagged with the value "****".

2. The module map (page 2) provides the following information for each object module
being linked:

® the name of the object file or library file supplying the object module;

® the name and attributes of each section in the module. Any entry points (addresses
declared as global symbols) for each section are also listed.

The module map allows you to verify that each section of your program has been
assigned a place in memory.

3. The memory map (page 3) lists the sections in the order they occur in memory.
Conflicting (overlapping) memory allocations are indicated with an asterisk (*).

Linker statistics appear at the bottom of the memory map.

1-26 REV FEB 1983

Learning Guide-8500 MDL. A Series Assembler Users Demonstration: Linker Listing

An optional feature of the linker listing, the internal symbol list, is useful for program
debugging. The internal symbol list is not demonstrated here but is discussed in the Linker
section.

The Memory Map
The memory map (page 3 of your listing) provides the most concise summary of the load file

produced by the linker.

AmAary man hAavia that

The Mmemory map snows tnat b'y't 0000 through 0005

Hrouuy AvA Y4

es emo
%PROGOB (the main program) and that bytes 0006 through 0008 will contain section
SUBS1 (the subroutine).

£
H

3

A mary warill nnn+ain cen{-inn
O Nnory win Coniain secudn

The memory map also gives the section type (SECTION) and relocation type (byte-relocatable)
for each section.

Notice that the transfer address remains unchanged because the section containing the
transfer address is located at the beginning of memory.

The Module Map

The module map (page 2} shows much the same information as the memory map. The
module map, however, reports the sections by module rather than by memory location.

The first object file, PROG.OBJ, contains the object module called *NONAME*. {(Recall that
the main program source code contains no NAME directive.) The main program consists of
the single section %PROGOB, whose attributes you already know from the memory map.

SUBSMOD consists of the single section SUBS1. The single entry point to SUBS1 is
OUTSUB, whose adjusted address (after relocation) is 0006.

The Global Symbols List

The global symbols list {page 1) shows the two symbols declared in GLOBAL statements
(OUTSUB and PORTN) and the two section names (%PROGOB and SUBS1).

REV A FEB 1981 1-27

Demonstration: Load

Learning Guide-8500 MDL A Series Assembler Users

“

Load the Executable Object Code into Memory

Before you load the object code, use the DOS/50 command F to fill the beginning of program
memory with zeros. Later, when you examine memory, the zeros make it easy to identify the end
of your code. Enter the following command to fill memory locations 0000 through 000F with

Zeros:

> F O OF 00 <CR>

Now copy the executable object code from the load file into program memory:

> LO_<ILOAD <CR>

Bytes 0000 through 0008 of program memory now contain the nine bytes of machine

language that form the executable program.

The DOS/50 command D displays the contents of a specified section of memory. Each byte is
displayed as a two-digit hexadecimal number and as the ASCII character it represents (if any).
Enter the following command to display the contents of memory locations 0000 through 000F:

> D 0 OF <CR>

0 1 2 3 45 6 T 8 9 A B C D E F
000000 3E 3F CD 06 00 76 D3 OF C9 00 00 00 00 00 00 00 D R
address of
first byte main subroutine rest of memory corresponding
displayed program not affected ASCH characters

by LO command

Compare the relocatable object code produced by the assembler with the executable object
code produced by the linker. (The addresses and object bytes adjusted by the linker are

underlined.)

RELOCATABLE OBJECT CODE
(from assembler listings)

EXECUTABLE OBJECT CODE
(from DISPLAY output)

Object Source Object Source
Address Code Code Address Code Code
0000 3E3F MVI A 72 0000 3E3F MVI A2
0002 CDO0O000 CALL OUTSUB 0002 CDg600 CALL OUTSUB
0005 76 HLT 0005 76 HLT
0000 D300 OUT PORTN 0006 D30F OUT PORTN
0002 (03] RET 0008 co RET

1-28

REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users Demonstration: Summary
e

Note the adjustments made by the linker:
® The subroutine is relocated from byte 0000 to byte 0006.
® The address of the subroutine is substituted into the CALL instruction.
® The port number is substituted into the OUT instruction.

Enter the following command to reestablish the system volume as the current directory.
(Enter your system volume name in place of sysvol.)

-["sysvol" represents the

name of your system volume

Summary of Demonstration Run
Enter the L command to list the files you have created:

> L ASM.DEMO <CR>

FILENAME

SUB.ASM#
SUB.ASM

SUB.OBJ

SUB.ASML
PROG.ASM
PROG.OBJ
PROG. ASML

TNAA™
LURU

LNKL

FILES USED aaa
FREE FILES bbb
FREE BLOCKS cece
BAD BLOCKS [o]

Recall the eight files you have created in this Demonstration Run:
® the two source files (SUB.ASM and PROG.ASM) you created using the editor;

® the two object files (SUB.OBJ and PROG.OBJ) and the two listing files (SUB.ASML and
PROG.ASML) generated by the assembler;

® the load file (LOAD) and the listing file (LNKL) generated by the linker.

When you corrected the misspelling of GLOBAL in your source file, the editor retained the
original file SUB.ASM as a backup file named SUB.ASM#.

REV FEB 1983 1-29

For Continued Learning Learning Guide-8500 MDL A Series Assembler Users
_

You have now finished the Demonstration Run. It emphasized how to:
® create a source file, using the editor;
® create an object file from a source file, using the assembler;
® create a load file from object files, using the linker;
® copy the load file into memory, using the LOAD command;

® interpret listings generated by the assembler and linker.

The Demonstration Run in the Learning Guide of the 8550 System Users Manual (DOS/50 Ver-
sion 2) shows you how to execute and monitor the program you have loaded into memory.

> DEL -N ASM. DEMO/* ASM.DEMO <(CR>

Using This Manual With DOS/50 Version 1
To convert this manual for use with DOS/50 Version 1, you must perform the following steps:

1. Throughout this manual, change all instances of the “CON” command to “COPY”, so that
the manual will reflect DOS/50 Version 1 syntax.

2. In the “Summary of Demonstration Run”, earlier in this section, change the first operating
system command line to:

> LDIR /VOL/sysvol/ASM.DEMO <CR>
N

name of your system volume

3. At the end of the “Summary of Demonstration Run”, change the operating system com-
mand line to:

> DELETE:N /VOL/sysvol/ASM.DEMO/ *,/VOL/Sysvol/ASM.DEMO <CR>
N N

name of your system volume
4. Throughout this manual, change all references of “Version 2" to “Version 1”.

8550 System Users Manual (DOS/50 Version 2). Describes how to use the 8550 Microcomputer
Development Lab and its operating system, DOS/50 Version 2.

FOR CONTINUED LEARNING

This Learning Guide explained the basic concepts needed to use the assembler and linker.
These same concepts will help you learn to use the library generator. For a more detailed
explanation of how to use these system programs, refer to the following sections:

Section 2, Procedures. Gives you step-by-step instructions for accomplishing common tasks
in assembling, linking, and library maintenance.

1-30 REV FEB 1983

Learning Guide-8500 MDL A Series Assembler Users For Continued Learning
A

Section 3, Assembler Introduction. Shows the use of the operating system command ASM.
Reviews the notational conventions used throughout this manual. Explains the assembler
listing in more detail.

Section 4, Assembly Language Elements. Describes the fundamental elements of an
assembly language statement. Gives rules for creating symbols, constants, and expressions.
Describes special characters and assembler functions.

Section 5, Assembler Directives. Describes the function and use of each assembler

directive. Each description is accompanied by one or more examples. Direc

in alphabetical order.

Section 6, Macros. Shows how to create and use assembler macros. Demonstrates the
macro features of the TEKTRONIX Assembiler.

Section 7, The Linker. Describes the function and use of the operating system command
LINK, and of each command in the linker subsystem. Explains the linker listing in more detail.

Section 8, The Library Generator. Describes the function and use of the operating system
command LIBGEN, and of each command in the library generator subsystem. Explains the
library generator listing.

Section 9, Programming Examples. Demonstrates and explains useful applications of the
assembler, linker, and library generator.

Section 10, Tables. Summarizes reference information in tabular form.

Section 11, Technical Notes. Provides information on special applications of the assembler,
linker, and iibrary generator.

Section 12, Assembler Specifics. Provides information that varies with each
microprocessor: registers, instruction sets, special error messages, etc. Section 12 also
contains Demonstration Runs for microprocessors other than the 8080A. An Irregularities
paragraph for each microprocessor lists exceptions to the standard reference material in this
manual.

Section 13, Error Messages. Lists the error messages for the assembler, linker, and library
generator. Each error message is accompanied by a description of the problem and possible
solutions.

Section 14, Glossary. Defines special terms used in this manual.

8550 System_Users Manual (DOS/50 Version 2). Describes how to use the 8550 Microcom-
puter Development Lab and its operating system, DOS/50 Version 2.

8550 Editor Users Manual. Describes how to use the 8550 Microcomputer Development
Lab Editor.

REV FEB 1983 1-31

8500 MDL A Series Assembler Users
L

Section 2
PROCEDURES

Page
INtrodUCtion e 2-1
Assembling Your Program i e 2-2
Invoking the Assembler i et 2-2
Combining Source Files During Assembly 2-2
Dispiaying internai Symbois in the Linker Listingcoviiiiiiiiiiinnnnn... 2-3
Linking Your Program i i e e e 2-4
Invoking the Linker (Simple INVocation)u.uuoi et 2-4
Invoking the Linker (Interactive INvocation).c.coiuiiiiniiiiiiin i, 2-5
Assigning Object Code to an Address Rangeciiiiiiiiiiiinnnnnnnn. 2-7
Reserving an Area of MemoOry e e 2-8
Building and Maintaining a Library.............. ... i, 2-10
INVOKING LiDGEN. .. e 2-10
Creating a User-Defined Libraryot 2-11
Adding a New Library Module i ittt eiiiane, 2-12
Extracting a Library Module ... 2-13
Replacing a Library Module ettt e 2-13
Combining Librariesouii e e 2-14

REV A FEB 1981 2-i

8500 MDL A Series Assembler Users

Section 2

PROCEDURES

INTRODUCTION

In the previous section, the Learning Guide, you were presented with the basic concepts of
the Tektronix Assembler and Linker. In this section, Procedures, you are shown procedures
for using the assembler, the linker, and the library generator.

Each procedure in this section is simply a series of one or more command entries or actions
for you to perform. Most of the procedures contain parameters (places for values) that you
will supply when you perform the procedure.

Each procedure is presented in the following format:

Description:

Procedure:

Parameters:
Comments:
Examples:

See Also:

A summary of the operation(s) performed by the procedure.

The information entered or displayed at the system terminal. The
following conventions are used in the procedure description:

Underlined: The character sequence that you will enter. The sequence
may consist of the exact characters to be entered, or parameters for

which you must substitute your values.

No underline: A character sequence that is displayed by the operating
system.

UPPERCASE: An exact character sequence; if these characters are
underlined, enter them exactly as shown. (If they are not underlined,

you will see these characters displayed by the operating system.)

lowercase: A parameter for which you will supply a value when vou
perform the procedure.

(Parentheses): A comment, or an action for you to perform at the
indicated time.

The filespecs or options that you provide.
The operating limits and options fo: this procedure.
One or more demonstrations of the correct entry format.

Cross-references to related procedures.

For a full description of any given command, refer to Assembler Directives, Linker, or Library
Generator section in this manual, as appropriate.

REV A FEB 1981

2-1

Assembling Your Program Procedures—8500 MDL A Series Assembler Users
%

ASSEMBLING YOUR PROGRAM

invoking the Assembler

Description: This procedure generates an object file (in machine language) from an
assembly language source file.

Procedure: > ASM object listing source

Parameters: object—The filespec of the resulting object code.
listing—The filespec of the listing file or device.
source—The filespec of the assembly source code for the program.

Examples: > ASM OBJ ASML ASM

This command line assembles the source code present in the file ASM.
The resulting object code is placed in the file OBJ. The assembler also
produces a program listing and a list of defined symbols. This listing is
placed in the file ASML. All the files in this example reside in the
current directory.

See also: ® Invoking the Linker

® Displaying Internal Symbols in the Linker Listing

Combining Source Files During Assembly

Description: This procedure assembles code from several source files into a single
object module.

Procedure: > ASM object listing asrc bsrc csrc

Parameters: object—The filespec of the resulting object code.
listing—The filespec of the listing file or device.
asrc—The filespec of the first source file to be assembled.
bsrc—The filespec of the second source file to be assembled.
csrc—The filespec of the third source file to be assembled.
Comments: The command line assembles the source files in left-to-right order. An

END statement should appear only in the last source file to be
assembled (in this case, csrc).

2-2 REV A FEB 1081

Procedures—8500 MDL A Series Assembler Users Assembling Your Program
P T Yy S S

Example: > ASM OBJ LPT A.ASM B.ASM C.ASM

The three source files are assembled left-to-right: A.ASM, then B.ASM,
and then C.ASM. The object code is placed in the file OBJ. All of the
files reside in the current directory. The program listing is output on the
line printer (LPT).

See also: ® Invoking the Assembler

Displaying Internal Symbols in the Linker Listing

Description: This procedure adds the internal symbol list to the linker listing. The
internal symbol list contains all of the symbols in the source file and
their fina! values. These internal symbols include: scalars, section
labels, and labels for unbound globais. This listing is useful for
debugging high-level and assembly language programs.

Procedure: (invoke the editor and inciude the LIST DBG option at the beginning of
the assembler source file.)

> EDIT yourfile

¥%¥ EDIT VER X.X
¥INPUT
INPUT:
tLISTEDBG <er>
<er>

¥FILE

¥EDIT* EOJ

(Assemble the yourfile source file)

> ASM object,,yourfile

(Link the assembled object file)

> LINK load listing object

{The load may now be LOADed into program memory. The linker listing
will show the memory addresses and the values of all symbols used in
the program.)

REV A FEB 1981 2-3

Linking Your Program Procedures—8500 MDL A Series Assembler Users
L

Parameters: object—The filespec of the assembled object code.

yourfile—The filespec of the assembly source file that will have the LIST
DBG option added.

load—The filespec of the resulting load file.

listing—The filespec of the listing file or device. This listing inciudes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

Comments: When you insert this listing control directive at the beginning of your
assembly code the linker will list the values assigned to the internal
symbol table. You may then examine or modify the program by using the
linker listing to find the memory locations of symbols.

See also: ® Invoking the Assembler

® Invoking the Linker (Simple Invocation)

LINKING YOUR PROGRAM

Invoking the Linker (Simple Invocation)

Description: This procedure converts the contents of object files {produced by the
assembler) into a single file that is suitable for loading.

Procedure: > LINK load listing object LIB(library)

Parameters: load—The filespec of the resuiting load file.

listing—The filespec of the listing file or device, Thig listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing

options.

object—The filespec of the object file from which the load file is
generated.

library—The filespec of a library file to be linked. You may omit this
parameter.

Comments: Additional object files may be linked by entering additicnal object
parameters.

2-4 REV A FEB 1981

Procedures—8500 MDL A Series Assembler Users Linking Your Program

#

Examples: > LINK LOAD LNKL OBJ LIB{YOUR.LIB)

This command uses the object code stored in the file OBJ and any object
modules selected from the YOUR.LIB library file to generate a load file
LOAD. The linker also produces a listing file LNKL. All files are located
in the current directory.

> LINK LOAD LNKL HER.OBJ HIS.OBJ ITS.OBJ

The object code stored in the file HER.OBJ is linked first, then the file
HiS.OBJ, then iast of aii the file iTS.OBJ. The resuiting ioad file is
named LOAD. The linker also produces a listing file named LNKL. All
files are located in the current directory.

See also: ® Invoking the Assembler
® Invoking the Linker (Interactive Invocation)

¢ Displaying Internal Symbols in the Linker Listing

Invoking the Linker (Interactive invocation)

Description: This procedure converts the contents of object files (produced by the
assembler) into a single file that is suitable for loading. This form of
invocation also permits a series of additional commands to be given to
the linker.

LINK

Procedure: >
*¥1,0G
¥
*

HAP

LOAD load

¥LIST listing

¥LINK object

¥ ITNK LIB(library)

¥ (Enter one linker command per line)

¥END

Parameters: load—The filespec of the resulting load file.

listing—The filespec of the listing file or device. This listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

object—The filespec of the object file from which the load file is
generated.

library—The filespec of a library file to be linked.

REV A FEB 1981 2.5

Linking Your Program Procedures—8500 MDL A Series Assembler Users

_

Comments: This form of linker invocation allows you to enter commands line-by-line
to specify: the listing format, the output file, the listing device or file, the
input file, and several other options. These optional commands LOCATE
sections, provide TRANSFER addresses for modules, and DEFINE values
for symbols. If you wish to link more than one file, repeat the LINK
command on the following line with the additional file as its parameter.
The END command begins tinker execution. For more information about
linker invocation, see the Linker section of this manual.

Example: > LINK
*LOG
¥MAP
*L0AD LOAD
¥LIST LPT
*LINK MY.OBJ
*¥LINK YR.OBJ
*LTNK LIB(COMMON.LIB)
¥DEFINE INITSP=3000
*END

The object code stored in the two files MY.OBJ and YR.OBJ is linked
with selected object modules from the library file COMMON.LIB. The
global symbol INITSP is assigned a hexadecimal value of 8000 and the
linked body of code is placed in a load file named LOAD. The line printer
(LPT) records the linker commands, the values of symbols, and the
locations of sections.

> LINK

*LOG

¥MAP

*¥LOAD OUT.LOAD

¥ IST LST.LNKL

¥LINK IN.OBJ

¥*LOCATE SECTNAME,BASE(0)
¥END

The input file IN.OBJ contains a section named SECTNAM. The BASE
attribute of the LOCATE command positions the starting address of this
section at address 0. The resulting load file is named QUT.LOAD. The
list file LST.LNKL records the linker commands, the values of symbols,
and the locations of sections.

See also: ® Assigning Object Code to an Address Range

® Reserving an Area of Memory

2-6 REV A FEB 1981

Procedures—8500 MDL A Series Assembler Users Linking Your Program

Assigning Object Code to an Address Range

Description: This procedure assigns an object code section to a specified address
range.

Procedure: > LINK

¥1.0G

*TikP

¥ OAD load

*LTST Iisting

¥ INK object

iLOCATE sectionname, RANGE (startaddr,endaddr)
END

Parameters: load—The filespec of the resulting load file.

listing—The filespec of the listing file or device. This listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

object—The filespec of the object file from which the load file is
generated. Repeat this line for each additional object file to be linked.

sectionname—The name of the object section that is relocated into the
specified address range.

startaddr—The lower bound of the allowed relocation range. This
address is specified in hexadecimal.

endaddr—The upper bound of the allowed relocation range. This
address is specified in hexadecimal.

Comments: The object files to be LINKed are scanned for the section name specified
by the LOCATE command. This object section is reiocated within a
RANGE bounded by the specified starting and ending addresses. All
other object sections may be relocated anywhere within the processor’s
address range (this includes the specified RANGE). The LOAD command
specifies the name of the load file. The listing may be sent to either a file
or device.

REV A FEB 1981 2-7

Linking Your Program Procedures—8500 MDL A Series Assembler Users

Example: > LINK
*1,0G
*VAP
¥LOAD LOAD
*TTST LNKL
¥TTINK IN.OBJ
*¥LOCATE SECTNAM, RANGE (0,FF)
*END

The input file IN.OBJ contains an object section named SECTNAM. The
LOCATE command assigns the object section SECTNAM within a range
of addresses O to FF. This range is specified by the RANGE parameter.
Any object sections remaining in IN.OBJ are relocated within the
address range of the processor. The resulting linked object code is sent
to the load file LOAD. The linker commands are recorded in the file
LNKL, along with the values of symbols and the locations of sections.

See also: ® Reserving an Area of Memory

® Invoking the Linker (Interactive Invocation)

Reserving an Area of Memory

Description: This procedure prevents relocation within a predefined address range.
Procedure: Label Operation Operand

SECTION dummyname , ABSOLUTE

ORG startaddr

BLOCK areasize

END

{Assemble an object file from the dummy source file:)

> ASM skipobject,,skipsource

(Link skipobject and your object file:)

> LINK load listing skipobject yourobject

Parameters: dummyname—The name of the dummy section. The SECTION
statement includes an ABSOLUTE option. This option directs the linker
to use the address specified by the ORG directive as the starting address
in memory. The operand of the BLOCK directive specifies the size of the
reserved block of memory.

startaddr—The starting address of the reserved area.

areasize—The size of the reserved area.

2-8 REV A FEB 1981

Procedures—8500 MDL A Series Assembler Users

Linking Your Program

Comments:

Example:

See also:

REV A FEB 1981

skipsource—The filespec of the dummy source file.

skipobject—The filespec of the assembled dummy file.

yourobject—The filespec of the object file containing your program.

listing—The filespec of the listing file or device. This listing includes a
global symbol list and optional internal symbol or map listings. Refer to
the Linker section of this manual for more information on the listing
options.

load—The filespec of the resulting load file.

A dummy file is linked with the object file containing your program. The
ABSOLUTE option within the dummy section directs the linker to start
the section at the address specified by the ORG directive. The BLOCK
directive specifies the size of the reserved area. The object sections of
your program are then relocated around the reserved area occupied by
the dummy section. This reserved area may be used for ROM storage or
memory-mapped 1/0.

Label Operation Operand Comment
SECTION SKIPSEC,ABSOLUTE;
ORG 0 ;Base Address
BLOCK 100H ; Reserved Memory
END ;

’

(Assemble the source file SKIP.ASM:)

> ASM SKIP.OBJ,,SKIP.ASM

(Link SKIP.OBJ and your object file)

> LINK LOAD LPT SKIP.OBJ YR.OBJ

The dummy file SKIP.ASM is assembled and stored in SKIP.OBJ. This
object file is linked with the object file YR.OBJ. The ABSOLUTE option
within the dummy section SKIPSEC directs the linker to start the section
at address O (as specified by the ORG directive). The BLOCK directive
then reserves a specified area of 100 (hexadecimal) bytes.

The linker relocates the remaining object sections around the SKIPSEC
dummy section, leaving the first 256 bytes of memory unused by this
program. The resulting load file is named LOAD. The listing device is the
line printer (LPT).

® Invoking the Linker (Interactive Invocation)

2-9

Building and Maintaining a Library Procedures—8500 MDL A Series Assembler Users
I S S

BUILDING AND MAINTAINING A LIBRARY

Invoking LibGen

Description: This procedure shows the general format for invoking the library
generator (LibGen).

Procedure: > LIBGEN newlib listing oldlib
¥ (Enter one LibGen command per line)

*END

Parameters: newlib—The filespec of the new version of the library.
listing—The filespec of the listing file or device.
oldlib—The filespec of the old library file.

Comments: When you invoke LibGen you may use one or more commands to
INSERT, EXTRACT, REPLACE, or DELETE library modules. If these
commands are not entered, oldlib will be copied into newlib without
modification. The END command must always terminate the invocation.
For more information, see the Library Generator section of this manual.

Example: > LIBGEN BIG.LIB LBGL SML.LIB
*INSERT BIG.OBJ
*¥*END

The library file SML.LIB is copied into a new library file named BIG.LIB.
The object module in file BIG.OBJ is inserted at the beginning of the
BiG.LiB iibrary file. The LBGL fiie iists the moduies within the output
library, the global symbols within each each module, and the actions
performed by the library generator.

> LIBGEN,,LBGL AD.LIB
¥END

The module names in the library file AD.LIB are sent to the listing file
LBGL. This file may be copied to the system terminal (CONO) or a line
printer (LPT).

See also: ® Creating a User-Defined Library
@ Adding a New Library Moduie
® Examining a Library Module
® Replacing a Library Module

® Combining Libraries

2-10 REV A FEB 1981

Procedures—=8500 MDL A Series Assembler Users Building and Maintaining a Library
T S R S

Creating a User-Defined Library

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

REV A FEB 1981

This procedure creates a new library from object modules.

> LIBGEN newlib listing
¥INSERT object (repeat as necessary)

¥END

newlib—The filespec of the new library file.
listing—The filespec of the listing file or device.
object—The filespec of one of the files containing the object modules to

be included in the library. Enter one INSERT command for each object
file to be inserted.

Each object module in the library should be uniquely named (with the
NAME directive) at assembly time. If you do not name the object
modules, you will not be able to modify or maintain the library.

For more information about naming modules, refer to the NAME
directive in the Assembler Directives section of this manual.

> LIBGEN MY.LIB LBGL

¥INSERT A.OBJ
¥INSERT B.OBJ
¥TNSERT C.OBJ
¥INSERT Z.0BJ
¥END

The library file MY.LIB is created in the current directory. The library file
contains object modules from files A.0BJ, B.OBJ, C.0BJ, and Z.0BJ.
The LBGL file lists the modules within the new library, the global
symbols within each each module, and the actions performed by the
library generator.

® Adding a New Library Module

® Combining Libraries

2-11

Building and Maintaining a Library Procedures—8500 MDL A Series Assembler Users
L - e

Adding a New Library Module

Description: This procedure copies a library and inserts an object module from a file
into the new library.

Procedure: > LIBGEN newlib listing oldlib
¥INSERT addobj
¥END
Parameters: newlib—The filespec of the new library version.

listing—The filespec of the listing file or device.
oldlib—The filespec of the old library file.

addobj—The filespec of the file containing the object module that is
added to the library.

Comments: Each object module in the library should have a unique name given at
assembly time. If you do not name the object modules, you will not be
able to modify or maintain the library.

Example: > LIBGEN AD.LIB LPT MY.LIB
¥*INSERT D.OBJ
*TND

The MY.LIB library is copied into AD.LIB. The object module within
D.OBJ is inserted at the beginning of the library. The list of the modules
within the output library, the global symbols within each each module,
and the actions performed by the library generator are listed on the line
printer.

See also: ® Examining a New Library Module

® Replacing a Library Module

2-12 REV A FEB 1981

Procedures—8500 MDL A Series Assembler Users Building and Maintaining a Library

S0,

Extracting a Library Module

Description: This procedure copies a library module into an object file.
Procedure: > LIBGEN,,listing 1lib

¥EXTRACT modlib TO newfile

¥END
Parameters: listing—The filespec of the listing file or device.

lib—The filespec of the library file.

modlib—The name of the library module that will be copied into a new
file.

newfile—A filespec of the new file used to store the extracted library
module.

Comments: The library lib and the newfile both contain the object module modlib
after this procedure is complete.

Example: > LIBGEN,,LPT AD.LIB
¥*FXTRACT AMOD TO X.O0BJ
¥EXTRACT BMOD TO Y.OBJ
¥END

Two modules are copied from the library file AD.LIB into two object files.
AMOD is copied into the object file X.0BJ; BMOD is copied into the
object file Y.OBJ. The line printer (LPT) lists the modules within the
library, the global symbols within each each module, and the actions
performed by the library generator.

See also: ® Adding a New Library Module
® Repiacing a Library Moduie

Replacing a Library Module

Description: This procedure replaces an existing library module with a new one.
Procedure: > LIBGEN newlib listing cldlib

¥REPLACE modlib BY newfile

*¥END
Parameters: newlib—The filespec of the new version of the library.

listing—The filespec of the listing file or device.

oldlib—The filespec of the old library file.

REV A FEB 1981 2-13

Building and Maintaining a Library

Procedures—8500 MDL A Series Assembler Users

2-14

Comments:

Example:

See also:

modlib—The name of the library module that will be replaced by the
new module.

newfile—The filespec of the new module.

The old library is scanned for modlib, which is then deleted and replaced by
the object module within newfile.

Each object module in the library shouid have a unique name given at
assembly time. If you do not name the object modules, you will not be
able to modify or maintain the library. For more information about
naming modules, refer to the NAME directive in the Assembler
Directives section of this manual.

> LIBGEN NU.LIB LBGL AD.LIB
¥REPLACE AMOD BY X.OBJ
¥REPLACE BMOD BY Y.OBJ
*ERD

The AD.LIB library is copied into NU LIB. The object module within
X.0OBJ replaces AMOD, and the object module within Y.OBJ replaces
BMOD. The listing file LBGL lists the contents of the new library and the
actions performed by the library generator.

® Examining a Library Module
® Adding a New Library Module

Combining Libraries

Description:

Procedure:

This procedure adds the contents of a small library to a larger library.

> LIBGEN,,oldlisting smallib
*EXTRACT mod1 TO filel
¥EXTRACT mod2 TO file?

¥*EXTRACT modx TO filex
¥END

(All of the modules in the smaller library have been copied into
individual files.)

> LIBGEN newlib newlisting biglib
*INSERT filel
*INSERT fileo

*INSERT filex
¥END

REV A FEB 1981

Procedures—8500 MDL A Series Asembler Users Building and Maintaining a Library

Parameters: oldlisting—The filespec of the listing file or device that shows the
contents of the old library.

smallib—The filespec of the smaller library file.

mod1, mod2, ..., modx—The library modules extracted out of the
smaller library.

file1, file2, ...,filex—The filespecs designating the individual files used

to store the modules extracted from smallib.
newlib—The filespec of the new library created from the combination of
smallib and biglib.

newlisting—The filespec of the listing file or device that shows the
contents of the new library.

biglib—The filespec of the larger library file.

Comments: This procedure copies all of the modules mod1, mod2, ..., modx from
the smallib library into individual object files file1, file2, ..., filex. The
biglib library is copied into the new library file newlib. The files file1,
file2, ..., filex are then inserted into the beginning of the newlib library.
The first listing shows the contents of the smallib library and the second
listing shows the contents of the newlib combined library.

Exampie: > LIBGEN,,OLD.LBGL MY.LIB
¥*EXTRACT AMOD TO A.OBJ
¥*EXTRACT BMOD TO B.OBJ
¥*EXTRACT CMOD TO C.OBJ
*END

> LIBGEN NU.LIB NEW.LBGL YR.LIB
¥INSERT A.OBJ

¥INSERT B.OBJ

¥INSERT C.OBJ

*END

Modules AMOD, BMOD, and CMOD are copied from the MY .LIB library
into intermediate object files A.OBJ, B.OBJ, and C.OBJ. The YR.LIB
library is copied into a new library named NU.LIB. The intermediate files
are then inserted at the beginning of the NU.LIB library. The listing file
OLD.LBGL lists the contents of the old library and the actions of the first
LIBGEN command; the listing file NEW.LBGL lists the contents of the
new library and the actions of the second LIBGEN command.

See also: ® Examining a Library Module
® Adding a New Library Module
® Invoking LIBGEN

REV A FEB 1981 2-15

8500 MDL A Series Assembler Users

Section 3
ASSEMBLER INTRODUCTION

Page
INEEOQUCTION .« o et e et e ettt et ettt ettt e et 3-1
Syntax NoOtatioN.o i i 3-1
(RS e Yo [o2 47o) o NS U GO 3-1
Command Name ... ittt ittt 3-2
P ATAIMIEIEIS - ot o e et sttt te et et e ae et ae et ae e taeeaaeaeenean it e 3-2
Assembler INVOCation. it i e i i i e 3-3
Assembler INPUL.oon i et 3-4
Assembler EXeCUION . ..o oottt i ettt ittt ee ettt 3-5
TWO PSS .« o vttt ittt et ettt et e et et e et e e e i e 3-5
Forward ReferenCingouuitimei it it ettt 3-5
EXECULION SOQUENCE . ¢ ittt ettt ettt et iitise e enaaaaneaaanensanns 3-5
Assembler OULPULttt i e e e 3-6
ObJeCt MOdUIE ..ttt ettt et e e 3-6
ASSEMDIET LISTING it e it i e 3-6
SOUFCE LISTING i i ittt e 3-6
Symbol Table . ..ot e 3-7
Sample Source Programo.uuet ittt 3-11
Sample Source Listing oottt i e 3-12
Sample Symbol Tableo e 3-18
ILLUSTRATIONS

Fig.

No.
3-1 Sample syntax block.. o i e 3-1
3-2 Sample assembler listing (Part 1 of 3)....... il 3-8
3-3 Sample assembier listing (Part 2 of 3)......... .ol 3-8
34 Sample assembler listing (Part 3 of 3)..... ... 3-10
3-5 Sample 8080A SOUICE ProOGramvovuvurnereeeennnneeannncennnns 3-11

REV A FEB 1981 3-i

8500 MDL A Series Assembler Users

Section 3
ASSEMBLER INTRODUCTION

INTRODUCTION

The assembler translates assembly language statements (source code) into machine
instructions (object code). The resulting object module, stored in afile, is suitable for input to the

linker or to the library generator {LibGen).

This section describes the Tektronix Assembler, and is divided into the following subsections:

® Syntax Notation. Describes the syntax conventions used throughout this manual.

® Assembler Invocation. Describes how to invoke the assembler with the operating system
ASM command.

® Assembler Input. Describes how the source module is used as input to the assembler.
® Assembler Execution. Describes the operations performed by the assembler.

® Assembler Output. Describes the output of the assembier: the object module and the
assembler listing. Includes an annotated assembler listing of a sample program.

SYNTAX NOTATION
Introduction
This manual uses syntax blocks to present:

® operating system commands,

linker commands,

® LibGen commands,

® assembler directives, and
°

assembler functions.

The conventions used in the syntax blocks are described in this subsection. Figure 3-1
illustrates a sample syntax block.

SYNTAX

rpPA7 [param2)
COMMAND param1([/par-one] l_,PB_] param3) ...

3454-6
Fig. 3-1. Sample syntax block.

This figure illustrates a syntax block for a sample command line.

REV A FEB 1981 3-1

Syntax Notation Assembler Introduction—8500 MDL A Series Assembler Users

In this fictitious example, COMMAND represents a command name. PA, PB, param1,
param2, param3, and par-one represent the command parameters.

Delimiters (usually spaces or commas) separate the parameters from the command name
and from each other.

Command Name

A command name is a word that represents a command or assembler directive. Uppercase
characters in the command name must be entered exactly as shown. When part of the command
name is underlined, you may enter that shortened form. In Fig. 3-1, the short form of the
command is COM.

Parameters

Parameters specify or modify how the command is executed. Parameters may be names,
addresses, devices, numbers, characters, or symbols. Capitalized parameters and any special
characters, such as the comma, parentheses, "at” sign (@), slash {/), and equals sign (=),
must be entered exactly as they appear in the syntax block.

Lowercase parameters are descriptive terms that identify the type of information to be
entered. Allowable entries appear in the PARAMETERS explanation for each command. In
this manual, parameters are sometimes represented in a syntax block by two words, joined
with a hyphen. The hyphen shows that they are not two separate parameters. In the
example, "par-one” represents one parameter.

Parameters may be required or optional in the command line. Required parameters appear in
the command line without braces or brackets. For example, "param1” is a required
parameter.

Optional Parameters

Optional parameters are enclosed in brackets [] in the syntax block. In Fig. 3-1 “/par-one” is
an optional parameter. The special character slash (/) is required if “par-one” is used.

Choice of Parameters

Parameters are stacked one above another when there is a choice of two or more
parameters. If the parameters are stacked within braces {}, one of the parameters must be
selected. In the example, either “param2” or “param3” must be selected. If the parameters
are stacked within brackets [], the selection is optional. In the example, you may select either
"PA" or "PB"” or neither. Notice that if either "PA" or "PB" is selected, it must be preceded by
a comma.

3-2 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Assembler Invocation
—_

Repeated Parameters

When three dots follow a parameter, the parameter may be repeated any number of times up
to the end of the current line. The choice of “param2” or "param3” may be repeated as many
times as the line permits.

ASSEMBLER INVOCATION

The assembler is invoked by the operating system command ASM.

SYNTAX
ASM [object] [listing] source...
PARAMETERS
object The filespec where the object module is written. If this parameter is

omitted, no object module is created.

listing The filespec where the assembler listing is to be written. If this parameter
is omitted, no listing is created. The listing can be printed directly to the line
printer, by specifying LPT as the listing device.

source The filespec of the source code.

EXPLANATION

The ASM command invokes the Tektronix Assembler. The source code residing on one or
more files is translated into object code (machine language), which is stored on the specified
object file or device. An assembler listing is generated and written on the specified file or
device. If either the object or listing is omitted, you must enter two commas. If both are
omitted, you must enter three commas. (See the Examples.)

h the source code. {See the Assembler Execution

[S
are entering the source code from a device, you must enter
r each assembler pass.

REV A FEB 1981 33

Assembler Input Assembler Introduction—8500 MDL A Series Assembler Users

—

EXAMPLES

ASM OBJ ASML ASM

This example assembles the source file ASM, creating the object file OBJ. The assembler listing
is stored in the file ASML. All files reside in the current directory.

ASM,,LPT MY.ASM

This example assembles the source file MY.ASM but does not generate an object file. The
assembler listing is output to the line printer.

ASM,, ,MY.ASM

This example assembles the source file MY.ASM that resides in the current directory, but does
not generate an object file or an assembler listing. This form of invocation might be used when
errors are suspected in the source file. The errors are listed on the system terminal.

ASSEMBLER INPUT

Assembler input consists of assembly language statements, as defined in the Language
Elements section of this manual. There are three types of assembler language statements:

® assembly language instructions,
® assembler directives, and

® macro invocations.

Blank lines and comment lines (lines beginning with a semicolon) may be included in the
input, but have no effect on the assembler. Any other assembler input will cause an error.

If the assembler input resides in one or more source files, each filespec must be specified in the
ASM command line. If the input is read from a device, the statements must be entered twice.
When the assembler is ready to read the source code a second time, it displays the following
message on the system terminal:

¥%¥¥ pass 2

If the statements entered on the second pass are not identical to those entered on the first
pass, assembly errors will result.

>4 REV A FEB 1081

Assembler Introduction—8500 MDL A Series Assembler Users Assembler Execution

ASSEMBLER EXECUTION
Two Passes
The assembler makes two passes over the input. During the first pass, the assembler:

® cxamines each statement, records any symbol it encounters in a symbol table, and
assigns a value to each symbol. That value is used in the second pass.

When the END statement or the end of the last source file is encountered, the assembler
reads the input again. During the second pass, the assembler:

® generates an ob
® generates a listing file, and

@ lists on the terminal any error messages generated. (See the LIST directive in the
Assembler Directives section of this manual.)

Forward Referencing
Since the assembier generates a symbol table on the

forward referencing. For example:

JMP DOWN

-

DOWN CALL oUTS

The symbol DOWN can be referenced before it is defined. If any symbol has a different value
during the second pass, a phase error results.

Execution Sequence
As the assembler reads each statement of the source program, it performs the following
sieps:
1. Makes any necessary text substitution. The assembler replaces any text substitution
construct, such as '1’, '@’, or 'VARNAME’, with the parameter, symbol, or string that
the construct stands for. (See the Language Elements section of this manual.)

2. Performs the indicated action according to the type of statement:

a. assembly language instruction—The assembler translates each assembly
language instruction into the corresponding machine instruction.

b. assembler directives—Performs the action specified by the directive. Not all
assembler directives produce object code. {See the Assembler Directives section
of this manual for the effect of individual directives.)

For example, some directives may simply define assembler symbols, while some
may alter the processing order of the statements. An IF directive causes a block
of code to be assembled or skipped depending on the true/false value of the IF
condition. When a MACRO directive is encountered, the assembler simply stores
the macro definition.

REV A FEB 1981 35

Assembier Output Assembler Introduction—8500 MDL A Series Assembler Users

¢. macro invocation—The assembler processes each statement within the
previously defined macro. {See the Macros section of this manual.)

The REPEAT directive within a macro causes a block of statements to be
assembled more than once. (See the REPEAT directive in the Assembler
Directives section of this manual.)

ASSEMBLER OUTPUT

The assembler generates an object module and an assembler listing. Any assembler errors
are displayed to the system terminal.

Object Module
The assembler generates an object module which is stored in binary format. This assembler-
created object module is suitable for one of the following uses:

e it may be linked with other modules to form an executable load file. (See the Linker
section of this manual.)

® |t may be inserted into a library file. (See the Library Generator section of this manual.)

® It may be loaded into program memory and executed provided that the module does not
contain any unbound global symbols and does not contain any sections that must be
relocated. (See the Linker section of this manual for information on relocatable
sections.)

Assembler Listing

The assembler generates an assembiler listing consisting of two parts: the source listing, and the
symbol table. Figures 3-2, 3-3, and 3-4 show the assembler listing of a sample program. Both
the listing and the sample program that generates it are examined in more detail later in this
section.

The assembler listing shown in this section consists of three pages: pages 1 (Fig. 3-2) and 2 (Fig.
3-3) show the source listing, which includes the source program and the object code generated
for each statement; page 3 (Fig. 3-4) shows the symbol table. Refer to Figs. 3-2, 3-3, and 3-4 as
you read the following descriptions.

Source Listing
Each line of the source listing contains the following information:

. the line number (decimal).

. the memory location (hexadecimal) of the object code generated (if any).

. the assembled object code (hexadecimal).

. a relocation indicator (>) if the object code is to be adjusted by the linker.

A b~ W N =

. a text substitution indicator () if the assembler has modified the source statement.
6. the source statement.

If any statement contains an error, the appropriate error message appears directly after the
statement.

36 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Assembler Output

e

Symbol Table

The assembler symbol table displays the value and type of each symbol. The symbol table is
divided into the following groups:

1. Strings and Macros—Symbols that are declared as string variables or defined as
macro names are listed in this group. The letter ”S” after the symbol indicates a string
variable and "M" indicates a macro. A number (in hexadecimal) follows each symbol.
That number represents the number of bytes required by the assembler to store the
character string or macro definition.

2. Scalars—Scalar symbols are listed in this group. The letter "G"” following the symbol
indicates a global symbol. The letter “V” indicates a variable defined with the SET
directive. The number that follows the symbol is the value assigned to the symbol. The
value for each variable is the last value assigned to the variable during assembly.

vx*#x1 indicates an undefined symbol.

3. Sections—Each section of the program is listed alphabetically in this group. The
following information appears with each section:

@ Section type—SECTION, RESERVE, or COMMON. See the Linker section of this
manual for the definition of section types.

Relocation type—PAGE, INPAGE, ABSOLUTE, or, if not specified, byte-relocatable.
Length of section—the number of bytes of object code generated (in hexadecimal).

All address symbols within the section—each with its address relative to the
beginning of the section. “"E” indicates that the ENDOF function is used to
determine the address. “H” indicates that the HI function is used and "L"” indicates
that the LO function is used.

4. Unbound Globals—Symbols used in this module but defined eisewhere are listed in
this group. Any symbols based on an unbound global are listed below that global.

5. Statistics—Two summary lines of statistics appear at the end of the symbol table. The
first line shows the number of source lines, the number of assembled lines, and the
number of available bytes. The number of available bytes indicates the amount of
space remaining in the assembler for storage of string variables, macros, and labels.
The second line indicates the number of errors and undefined symbols, if any. These
lines of statistics also appear on the system terminal at the end of the assembly
process.

REV A FEB 1981 3-7

Assembler Output Assembler Introduction—8500 MDL A Series Assembler Users

Tektronix B8080/8085 ASM Vx.x SAMPLE PROGRAM Page 1
object
code
memory relocation
location indicator (>)
line
number text substitution source
indicator (+) statements

00002 LIST TRM
00003 STRING VOTERS(20) ,MYSELF(20)
00004 STRING SENTENCE (40)
00005 03E8 SEATS SET 1000
00006 MYSELF SET "KEN DEDATE"
00007 VOTERS SET "ENGINEERS"
00008 00c6 CONTRIB SET 198
00009 ; DEFINE RESERVE SECTION "SEATING".
00010 FFFF IF HI(CONTRIB) = 0
00011 WARNING ; CONTRIBUTION TOO SMALL
#%¥%¥ FRROR 001:
00012 01FU SEATS SET SEATS - 500
00013 ENDIF
00014 RESERVE SEATING,SEATS
00015
00016 ; DEFTNE MACRO "PROMISE", N
00017 MACRO PROMISE
00018 ; THIS MACRO CONCATENATES ALL PARAMETERS INTO
00019 ; A SINGLE SENTENCE.
00020 SENTENCE SET e
00021 PARAM SET 1 ; POINT TO FIRST PHRASE. macro
00022 REPEAT PARAM <= '#! ; REPEAT definition
00023 SENTENCE SET SENTENCE:" ":'PARAM' ; FOR
00024 PARAM SET PARAM + 1 ; EACH
00025 ENDR ; PHRASE.
00026 ASCII "I SENTENCE'"
00027 ENDM J
00028
00029 CCCO 000000 DELIBERATE ERRCR
EX¥%%® FRROR 039: Invalid operation code
20030 : DEFINE PROGRAM SECTION "CAMPAIGN".
00031 GLOBAL SPEAK,KISSBABY
00032 SECTION CAMPAIGN
00033 0008 > ELECTION EQU ENDOF(CAMPAIGN)
0003Y 0001 > NEXTBABY EQU KISSBABY + 1
00035 0000 CD0OOOO > FIRST CALL SPEAK
00036 0003 CDOOOO > THEN CALL KISSBABY
00037 0006 C30100 > LAST JMP NEXTBABY
00038 ; DEFINE COMMON SECTION "SPEECH".
00039 COMMON SPEECH, ARSOLUTE
00040 0100 ORG 100H
00041 0100 0080 APPLAUSE BLOCK 80H
00042 0180 MESSAGE EQU $ macro
00043 PROMISE VOTERS,"WILL ALWAYS HAVE" —M8M8M8 — . ti

0180 20USHEALT + ASCII " ENGINEERS WILL ALWAYS HAVE" Invocation

0184 4QUEHSHS

0188 52532057

018C 494cHucao

0190 414C5741

0194 59532048

0198 415645
0004y PROMISE "A FRIEND IN",MYSELF,"."

019B 20412046 + ASCII " A FRIEND IN KEN DEDATE ."

3575-1

Fig. 3-2. Sample assembler listing (Part 1 of 3).

This sample assembler listing, and the source program that generated it, are discussed in the text.

3-8 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Assembler Output

f

Tektronix 8080/8085 ASM Vx.x SAMPLE PROGRAM Page 2

019F 5249U5SLUE

01A3 H4420H4QUE

01A7 20U4BUSYLE

01AB 20444544

O1AF 41544520

01B3 2E

00045 PROMISE "TELL YOUR FELLOW",VOTERS

01B4 2054454C + ASCII " TELL YOUR FELLOW ENGINEERS"
01B8 H4C20594F

01BC 55522046

01CO 45UCUCHF

01CY4 5720454E

01C8 UTUQUELS

01CC 455253 N
00046 LIST ME ; SHOW FULL MACRO EXPANSION
00047 PROMISE "TO VOTE FOR"™,MYSELF,"."
SENTENCE SET nn
0001 PARAM SET 1 ; POINT TO FIRST PHRASE.
FFFF + REPEAT PARAM <= 00003 ; REPEAT
+ SENTENCE SET SENTENCE:™ ":"TO VOTE FOR"™ ; FO
0002 PARAM SET PARAM + 1 ; EACH
ENDF ; PHRASE.
FFEF + REPEAT PARAM <= 00003 ; REPEAT
+ SENTENCE SET SENTENCE:" ":MYSELF ; FOR
0003 PARAM SET PARAM + 1 ; EACH complete .
ENDR ; PHRASE. macro expansion
FFFF + REPEAT PARAM <= 00003 ; REPEAT listed
+ SENTENCE SET SENTENCE:" ":"." ; FOR
0004 PARAM SET PARAM + 1 ; EACH
ENDR ; PHRASE.
01CF 20544F20 + ASCII v T0 VOTE FOR KEN DEDATE ."
01D3 56UF5ULS
01D7 20464F52
01DB 204BUSLE
01DF 20444544
01E3 41544520
01E7 2E
00048 END 4

3575-2

Fig. 3-3. Sample assembler listing (Part 2 of 3).

REV A FEB 1981 39

Assembler Output Assembler Introduction—8500 MDL A Series Assembler Users

Tektronix 8080/8085 ASM Vx.x Symbol Table Page 3
Strings and Macros)
strings
MYSELF - 0014 S PROMISE 0135 M SENTENCE 0028 S and macros
VOTERS -~ 0014 S
Scalars
A —mmmee 0007 : 0000 C mmmmmm 0001
CONTRIB 00C6 V D —mmee- 0002 DELIBERA *##% scalars
E —ceeeun 0003 H -==aeen 0004 | 0005
M e 0006 PARAM -- 0004 V PSW ---- 0006
SEATS -- O1F4 V SP ——-=- 0006
% (default) Section (0003) \\
CAMPAIGN Section (0009)
ELECTION 0008 E FIRST -- 0000 LAST --- 0006
THEN --- 0003 Psections
SEATING Reserve (01F%4)
SPEECH Common Absolute (071E8)
APPLAUSE 0100 MESSAGE 0180 ‘)
KISSBABY Unbound Global
unbound
NEXTBABY 0001 globals
SPEAK Unbound Global
48 Source Lines 108 Assembled Lines 47025 Bytes available L.
statistics
2 ERRORS 1 UNDEFINED SYMBOLS
3575-3

Fig. 3-4. Sample assembler listing {Part 3 of 3).

This sample assembier listing, and the source program that generated it, are discussed in the text.

3-10 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Sample Source Program

—

Sample Source Program

Figure 3-5 shows the sample source program that generated the assembler listing shown in
Figs. 3-2, 3-3, and 3-4. The program has no practical application, but is purposely contrived to
illustrate a variety of listing features.

MACRO

TITLE "SAMPLE PROGRAM"
LIST TRM
STRING VOTERS (20) ,MYSELF(20)
STRING SENTENCE (40)
SEATS SET 1000
MYSELF SET "KEN DEDATE™
VOTERS SET "ENGINEERS"
CONTRIB SET 198
; DEFINE RESERVE SECTION "SEATING".
IF HI(CONTRIB) = O
WARNING ; CONTRIBUTION TOO SMALL
SEATS SET SEATS - 500
ENDIF
RESERVE SEATING,SEATS

; DEFINE MACRO "PROMISE".

PROMISE

; THIS MACRO CONCATENATES ALL PARAMETERS INTO
; A SINGLE SENTENCE.
SENTENCE SET "

PARAM SET 1 ; POINT TO FIRST PHRASE.
REPEAT PARAM <= '#!' ; REPEAT
SENTENCE SET SENTENCE:" ":'PARAM' ; FOR
PARAM SET PARAM + 1 ; EACH
ENDR ; PHRASE.
ASCII WISENTENCE""
ENDM

DELIBERATE ERROR
; DEFINE PROGRAM SECTION "CAMPAIGN".

GLOBAL SPEAK,KISSBABY
SECTION CAMPAIGN
ELECTION EQU ENDOF(CAMPAIGN)
NEXTBABY EQU KISSBABY + 1
FIRST CALL SPEAK
THEN CALL KISSBARY
LAST JMP NEXTBABY

; DEFINE COMMON SECTION "SPEECH".

COMMON SPEECH, ABSOLUTE
ORG 100H
APPLAUSE BLOCK 80H
MESSAGE EQU $
PROMISE VOTERS,"WILL ALWAYS HAVE"
PROMISE "A FRIEND IN",MYSELF,"."
PROMISE "TELL YOUR FELLOW",VOTERS
LIST ME ; SHOW FULL MACRO EXPANSION.
PROMI3E "TC VOTE FOR",MYSELF,"."
END

3575-4

Fig. 3-5. Sample 8080A source program.

This source program generated the sample assembler listing that was shown in Figs. 3-2, 3-3, and 3-4.The
text discusses each line in this source program, and the object code that it generates.

REV A FEB 1981

Sample Source Program Assembler Introduction—8500 MDL A Series Assembler Users

e E———_——,— L ———

Sample Source Listing

Let’s compare the source program (Fig. 3-5) with the assembler listing (Figs. 3-2, 3-3, and 3-4).
The first line of the source program is:

TITLE "SAMPLE PROGRAM"

The TITLE directive creates a title on each page of the assembler program listing. The TITLE
directive itself does not appear on the program listing and does not generate any object code.

Tektronix 8080/8085 ASM Vx.x SAMPLE PROGRAM Page 1
—— cm—

title

The next statement in the source program is:
LIST TRM

The LIST directive controls various features of the assembler listing. This particular use, with
the TRM option, prints the assembler listing in a 72-character width instead of the default
132-character width. Although this line appears in the assembler listing, it does not generate
object code.

STRING VOTERS(20) ,MYSELF (20)
STRING SENTENCE (40)

The next two lines of source code declare the symbols VOTERS, MYSELF, and SENTENCE as
string variables. These lines do not generate object code. The variables appear in the symbol
table of the assembler listing code. The variables appear in the symbol table of the assembler
listing (Fig. 3-4). The "S" following each symbol indicates a string variable.

SEATS SET 1000

MYSELF SET "KEN DEDATE"
VOTERS SET "ENGINEERS"
CONTRIB SET 198

The SET directive assigns a value to a variable. in the first of these four SET statements, a
numeric vaiue is assigned to the numeric variabie SEATS. I'he value 1000 (decimal) appears
in the object code column (line 00005 in the assembler listing) as O3E8 hexadecimal. No
memory location appears on the line because the value is not stored in the object program.

MYSELF and VOTERS require string values enclosed in double quotes (" ") since they are
string variables. The numeric value 198 (OOC6H) is assigned to the numeric variable
CONTRIB.

; DEFINE RESERVE SECTION "SEATING".

The semicolon (;) designates this line as a comment line. Comment lines appear in the
assembler listing, but have no effect on the object code.

3-12 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Sample Source Program

IF HI(CONTRIB) = 0

WARNING ; CONTRIBUTION TOO SMALL
SEATS SET SEATS - 500

ENDIF

These four statements are a conditional assembly block. The IF directive causes the block of
statements between the IF and ENDIF to be assembled if the condition is true. In this case,
the condition "HI{CONTRIB) = 0" is evaluated. The current value of the variable CONTRIB is:

00C6H (198 decimal)

——

high byte

The function HI{CONTRIB) returns the high byte of CONTRIB (00). Since the condition value
of the IF statement is true, the block is assembled and the statements appear on the
assembler listing. The WARNING directive generates a user-defined error message. This
message appears both on the terminal display during assembly and in the assembler listing.

The SET directive changes the value of the symbol SEATS from O3E8H (1000 decimal) to
01F4H (1000-500 decimal). See line 00012 of the assembler listing.

RESERVE SEATING, SEATS

This statement is an assembler directive that reserves a section in memory. The section is
named “SEATING” and has 01F4H bytes (the current value of SEATS). The section SEATING
appears in the symbol table (Fig. 3-4), with the word “Reserve” identifying the type of section.

Next, notice the blank line in the sample program. A blank line has no effect on the object
code, but it does generate a line in the source listing.

; DEFINE MACRO "PROMISE".

Although this comment iine appears in the assembier iisting, it has no effect on the object
code.

MACRO PROMISE
; THIS MACRO CONCATENATES ALL PARAMETERS INTO
; A SINGLE SENTENCE.
SENTENCE SET nn

PARAM SET 1 ; POINT TO FIRST PHRASE.
REPEAT PARAM <= '#! ; REPEAT
SENTENCE SET SENTENCE:" ":'PARAM' ; FOR
PARAM SET PARAM + 1 ; EACH
ENDR ; PHRASE.
ASCII "ISENTENCE'™
ENDM

This block of source code is a macro definition. The statements in a macro definition (with
the exception of full comment lines) are stored by the assembler. When the macro is invoked,
the statements within the macro are assembled, generating any indicated object code. The
macro will be explained later, when it is invoked.

REV A FEB 1981 3-13

Sample Source Program Assembler Introduction—8500 MDL A Series Assembler Users

Another blank line in the program code improves the readability of the program, setting the
macro definition apart, but has no effect on the assembler.

DELIBERATE ERROR

This line is an invalid statement because DELIBERATE, which appears in the operation field,
is not an assembly language instruction, an assembler directive, or a macro invocation. An
error message is printed on the terminal and listed in the assembler listing.

; DEFINE PROGRAM SECTION "CAMPAIGN".

This line is another comment line and has no effect on the object code.

GLOBAL SPEAK,KISSBABY

The assembler directive GLOBAL declares SPEAK and KISSBABY to be global symbols. They
are unbound globals. That is, they are used in this module, although they are defined
elsewhere. No object code is produced.

SECTION CAMPAIGN

The assembler directive SECTION begins the definition of program section CAMPAIGN. The
lines of source code following this statement define the section.

ELECTION EQU ENDOF(CAMPAIGN)

The assembler directive EQU assigns a value to the symbol ELECTION. The ENDOF function
returns the address of the last byte of a section. The assembler listing for this source line is:

00033 0008 > ELECTION EQU ENDOF(CAMPAIGN)

relocation indicator

The relocation indicator (>) shows that the object code for this source line (an address) will be
adjusted by the linker at link time. Since the section CAMPAIGN is relocatable, the address of
the last byte is undetermined until link time. The 0008, which is the value assigned to
ELECTION, tells us that there are nine bytes (0000 through 0008) in the section. (The
beginning address of every reiocatabie section is 0000 at assembiy time.)

NEXTBABY EQU KISSBABY + 1

The assembler directive EQU assigns a value to the symbol NEXTBABY. The value assigned
(KISSBABY + 1) is dependent on the address value of the unbound global KISSBABY. In the
assembler listing (Fig. 3-2, line 00034), the relocation indicator again shows that the object
code will be adjusted by the linker. The 0001 indicates that the adjusted address will be +1
relative to the address of KISSBABY.

314 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Sample Source Program

FIRST CALL SPEAK

This statement is an 8080A assembly language instruction which calls the subroutine
SPEAK. The assembler listing shows the object code that is generated:

00035 0000 CDOOOO > FIRST CALL SPEAK
~r— "

address of subroutine SPEAK
OP code of the instruction CALL

memory location

Since this is the first statement in section CAMPAIGN that produces object code, the memory
location assigned is 0000. CD is the OP code for the instruction CALL. Since SPEAK is an
unbound global variable, it does not have an address in this module. (The dummy value 0000
appears in the object code.) The ">" indicates that the object code (the address of the
subroutine SPEAK) will be adjusted by the linker.

THEN CALL KISSBABY

This statement calls the subroutine KISSBABY, another unbound global. In the listing of this
statement (line 00036), the memory location is 0003, since the previous instruction (CALL
SPEAK) occupies bytes 0000-0002.

LAST JMP NEXTBABY

This statement is an 8080A assembly language instruction. The object code generated is
”"C30100". (See line 00037 in the assembler listing.} C3 is the OP code for the instruction
JMP. NEXTBABY has the value 0001 (the 8080A stores two-byte numbers in low-byte/high-
byte order). This value will be adjusted by the linker, depending on the address of the section
KISSBABY.

; DEFINE COMMON SECTION "SPEECH".

This is another comment line.

COMMON SPEECH, ABSOLUTE
ORG 100H

The assembier directive COMMON deciares the next biock of statements to be a new section
of type COMMON. The name of the section is SPEECH and it is an absolute section. The
location of the first byte of the section is defined to be 100H by the ORG statement.

APPLAUSE BLOCK 80H
This statement generates the first byte of the common section SPEECH. The memory location
of the first byte is O100H.

00041 0100 0080 APPLAUSE BLOCK 80H

——

memory location

This BLOCK directive reserves a block of 80H bytes. The symbol APPLAUSE represents the
address of the first byte of the block (0100).

REV A FEB 1981 315

Sampie Source Program Assembler Introduction—8500 MDL A Series Assembler Users

S OO P

MESSAGE EQU $

This statement is an assembler directive that assigns a value to the symbol MESSAGE. The
dollar sign ($) in the operation field returns the value of the location counter. The assembler
listing shows that the value 0180 was assigned to MESSAGE.

00042 0180 MESSAGE EQU $

The location counter was advanced to 0O180H when the directive "BLOCK 80H" was
assembled. MESSAGE represents the address of the next byte of object code to be
generated.

PROMISE VOTERS,"WILL ALWAYS HAVE"

This statement invokes the macro PROMISE, which was previously defined. There are two
macro parameters: (1) the symbol VOTERS and (2) the character string "WILL ALWAYS
HAVE”. This single source line generates eight lines in the assembler listing:

00043 PROMISE VOTERS,"WILL ALWAYS HAVE"
0180 204SHELT + ASCII " ENGINEERS WILL ALWAYS HAVE"

0184 LQUEL5U5
0188 52532057
8138 3?3%255? \———text substitution indicator

0194 59532048
0198 Uu15645

‘EASCII representation of ” ENGINEERS WILL ALWAYS HAVE"

When the macro is invoked, the assembler processes the lines of the macro definition. The
assembler listing shows us only the one source line that generates object code, namely:

ASCII " ENGINEERS WILL ALWAYS HAVE"

Let's look at the other statements in the macro definition:
SENTENCE SET nn

This SET directive assigns the null string (””) to SENTENCE.

PARAM SET 1 ; POINT TO FIRST PHRASE.
This SET directive assigns the value 1 to the numeric variable PARAM.

REPEAT PARAM <= '#° ; REPEAT
SENTENCE SET SENTENCE:" ":'PARAM' ; FOR
PARAM SET PARAM + 1 ; EACH

ENDR ; PHRASE.

This block of statements (a repeat block) is assembled repeatedly until the REPEAT operand
(PARAM <= '#') is false. When a macro is assembled, the '#' is replaced with the number of
parameters passed from the macro invocation. In this statement, the '#' is replaced with 2
(two parameters), so the block of statements is repeated twice. (See "Determining Parameter
Count” in the Macros section of this manual.)

3-16 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Sample Source Program

R

The first time the block is assembled 'PARAM’ is replaced with VOTERS, since PARAM has
the value 1 and VOTERS is the first parameter. The second statement in the block
concatenates the current value of the string variable SENTENCE (”“), a space (" ”), and the
value of VOTERS (“ENGINEERS"); the resulting string is assigned to SENTENCE. SENTENCE
now has the value of:

" ENGINEERS"

The next statement increments the current value of PARAM by one. PARAM now holds the
value 2. Since the repeat condition {(PARAM <= '#') is still true, the block of statements is
repeated. This time, 'PARAM’ is replaced with "WILL ALWAYS HAVE”, the second
parameter. The statement concatenates the current value of SENTENCE (" ENGINEERS"), a
space (" "), and the character string "WILL ALWAYS HAVE"”. SENTENCE now has the value
of:

" ENGINEERS WILL ALWAYS HAVE"

PARAM is incremented to 3. The repeat condition is no longer true, so the assembly
continues with the statement following the ENDR:

ASCII "'SENTENCE'"

This statement generates object code and is therefore listed in the assembler listing. The
object code generated is the ASCII representation of each character of the string in the
operand field. The assembler first makes the text substitution indicated by the single quotes
("'). "SENTENCE" is replaced with “"ENGINEERS WILL ALWAYS HAVE". Notice that the text
substitution is shown on the source listing, along with the text substitution indicator (+).

Assembly continues with the statement following the macro invocation.

PROMISE "A FRIEND IN", MYSELF,"."

This statement invckes the macro PROMISE again. This invocation has three parameters: (1)
the character string "A FRIEND IN”, (2) the symbol MYSELF, and (3) the string “.”. The
resulting object code is the ASCIi representation of " A FRIEND IN KEN DEDATE .”

PROMISE "TELL YOUR FELLOW", VOTERS

This next statement invokes the macro PROMISE with two parameters, the string "TELL
YOUR FELLOW” and the symbol VOTERS. The resulting object code is the ASCII
representation of:

" TELL YOUR FELLOW ENGINEERS"

The next statement in the sample program is:
LIST ME ; SHOW FULL MACRO EXPANSION.

The LIST directive turns on various features of the assembler listing. This statement sets the
ME/MEG option to the ME setting: When a macro is invoked, the assembler listing shows all
of the assembled statements of the macro expansion. (Comment lines within a macro are not
listed because they are not saved with the macro definition.)

REV A FEB 1981 317

Sample Source Program Assembler Introduction—8500 MDL A Series Assembler Users

PROMISE "TO VOTE FOR",MYSELF,"."
This macro invocation returns the ASCII representation of ” TO VOTE FOR KEN DEDATE .”
Notice in the assembler listing (following line 00047) that the text substitution indicator

appears on seven lines. The '#' is replaced by "00003"” and 'PARAM’ is replaced by the
appropriate parameter.

Also notice in the assembler listing that a character is missing from the end of the line:
+ SENTENCE SET SENTENCE:" ":"TO VOTE FOR" ; FO

In the source program, the comment was ”; FOR"”. The "R” does not appear on the source
listing because the LIST TRM directive had previously trimmed the listing to 72 characters.

The last statement of the source code is:
END

This statement marks the end of the source program.

Sample Symbol Table

Now let's examine the symbol table for the sample program (Fig. 3-4). Listed under Strings and
Macros are four symbols: MYSELF, PROMISE, SENTENCE, and VOTERS. The “S” indicates that
MYSELF, SENTENCE, and VOTERS are string variables. The "M" indicates that PROMISE is a
macro. The number of bytes required to store the macro definition is 0135H.

Listed under Scalars are not only the numeric symbols used in the program (CONTRIB,
PARAM, and SEATS), but also 8080A register names, since they are also symbols with
scalar values. Each variable is listed with the last value assigned to it.

"DELIBERA" is listed in this section of the table. The four stars (****) flag it as an undefined
symbol. When the assembler examined the statement "DELIBERATE ERROR"”, the word was
treated as an undefined symbol since it was not an assembly language instruction, an
assembler directive, or a defined macro. (Only the first eight characters of a symbol are

recognized.) This error also explains the next line of .the symbol table:
% (default) Section (0003)

When there are statements in an undefined section, the assembler assigns them to the
default section. (See the SECTION directive, in the Assembler Directives section of this
manual, for a description of the default section.) In our sample program, the assembler
generated three bytes of zeros in response to the "DELIBERATE ERROR" line and created a
default section.

3-18 REV A FEB 1981

Assembler Introduction—8500 MDL A Series Assembler Users Sample Source Program

—

There are four Sections in our program: the default section, CAMPAIGN, SEATING, and
SPEECH.

CAMPAIGN Section (0009)
ELECTION 0008 E FIRST -- 0000 LAST --- 0006
THEN --- 0003

In this section summary, the name of the section is CAMPAIGN, which is of type "Section”.
The section is 0009 bytes long. The addresses of the four symbols, ELECTION, FIRST, LAST,
and THEN, are relative to the base address of the section and are subject to relocation, since
the section is byte-relocatable. The "E” that follows the symbol "ELECTION” indicates that
the ENDOF function is used to determine the value.

Section SEATING is a “Reserve” section that is 01F4 (hexadecimal) bytes long. Section
SPEECH is a "Common” section that is not relocatable (absolute) and is O1E8H bytes long,
including the 100H-byte gap at the beginning of the section.

In our sample program, the symbols KISSBABY and SPEAK are the only unbound globais.
Let's look at the lines of statistics:

48 Source Lines 108 Assembled Lines 47025 Bytes available

2 ERRORS 1 UNDEFINED SYMBOLS

There are more Assembled Lines (108) then Source Lines {48) because the macro
invocations and REPEAT block cause some of the source lines to be assembled more than

once.

The statistics also include the number of Bytes Available in the assembler for further

storage of labels, string variables, and macros.

There are two Errors listed for this sample program: (1) the user-defined warning, and (2) the
error generated by the line "DELIBERATE ERROR”. "DELIBERA" is the Undefined Symbol.

REV A FEB 1981 3-19

8500 MDL A Series Assembler Users

Section 4
LANGUAGE ELEMENTS

Page

Introduction i e 4-1
Statement Fields........o i 4-1
Label Field o 4-2
Operation Field i 4-3
Operand Fieldcciiiiiiinne... 444
Comment Field i it 4-5
SYMDbOIS 4-6
User-defined Symbols..........o i, 4-6
Predefined Symbols. i 4-7
Values ...ttt e 4-7
Numeric Values e e, 47
Scalar Valuescviviiiiiii ittt iiie e, 4-7
Address Vallues. ..ot 4-8
Numeric Constantsot 4-8
Numeric Variables oo, 4-9
String Values. ... o.voirii e 4-9
String CoNStANTS. ..t tte ettt 4-9
String Variables oo il 4-10
{00217 7=T =7 To T o [P 4-10
Text Substitution il 4-11
EXPressions 4-12
INtrodUCHiON ..ottt e 4-12
Hierarchyo e 4-13
OPEratorsuiunr ettt e 4-13
Arithmetic Operators...........ooiiiiiiiienenennnn 4-14
Logical Operators.......ooueiiiiiiiiiienaenneannn.. 4-16
Relational Operatorscooiiieiiiiiiininneennn. 4-17
String Operator. i i 4-19

REV A FEB 1981

Page

FUNCHIONS .« ettt et et et e 4-19
Logical Functions
BASE—Determines whether two values have common

DaSE it e 4-20

DEF—Determines if symbol is defined 4-22

ENDOF—Returns end address of section......... 4-23
Numeric Functions

Hi—Returns high byte 4-24

LO—Returns low byte, 4-25

SCALAR—Converts address to scalar............. 4-27

String Functions
NCHR—Returns number of characters in string .. 4-26

SEG—Returns substring L 4-28

STRING—Converts scalar to String............... 4-29
TABLES

Table No. Page

4-1 Expression Operators and Functions............ 4-12

4-2 Hierarchy of Operatorsc.coviuun... 4-13

4-3 Types of Comparisons with Relational Operators 4-18

ILLUSTRATIONS

Fig. No. Page
4-1 Formatted Source File......... 4-1

8500 MDL A Series Assembler Users

Section 4

LANGUAGE ELEMENTS

INTRODUCTION

This section provides reference information about t

elements. The section discusses the following topics:

® Statement Fields—Explains the four fields in an assembler source statement: label,
operation, operand, and comment.

® Symbols—Explains how symbols are used in assembler source programs.
® Values—Describes numeric and string values used by the assembler.
® Text Substitution—Describes the use of text substitution.

® Expressions—Describes the type of permitted expressions, and their required formats.
Describes the use of operators in expressions. Defines and gives the results of
assembler functions. The functions are listed alphabetically for reference.

STATEMENT FIELDS

An assembly language source program consists of statements. Each statement occupies one
line of text. Each statement may contain up to 127 characters; the line ends with a return
character (ASCH code 13). Blank lines can be used within the program for readability and
have no effect on the assembly.

A statement consists of four fields. Each field may vary in width, and certain fields may be
omitted, but the fields always occur in the following order:

LABEL OPERATION OPERAND COMMENT

Readability is improved when each field has a constant width on each line. This columnar
format can be implemented with tab settings. Fig. 4-1 is an example of a formatted 8080A

source file.
Label Operation Operand Comment
GLOBAL PORTN,OUTSUB
PORTN EQU 15 ; PORT = 15
START MWVI A, ; CHARACTER = "2V
CALL OUTSUB ; SEND "?" TO PORT 15...
HLT ; ... AND STOP.
END START
35755

Fig. 4-1. Formatted Source File.

Each field has a constant width in this 8080A source program, making it easier to read.

REV A FEB 1981

Statement Fields Language Elements—8500 MDL A Series Assembler Users

Label Field

The label field, when used, must begin in the first character position of a line. A space or tab
terminates the label field. A statement’s label allows the statement to be referenced by other
statements.

The label is a user-defined symbol. The symbol must follow the rules for constructing
symbols (described later in this section). Embedded spaces are not permitted within a symbol.
Every label must be unique within each assembler source program. The assembler generates
an error message when duplicate labels are used.

A label is permissibie in all statements, including assembler directives, assembly language
instructions, and macro invocations.

The meaning of the label in an assembler directive statement depends upon the particular
directive. For most directives the label is optional and not always meaningful. However,
labels are always required with the EQU and SET directives. See the Assembler Directives
section of this manual for the specific meaning in each directive.

Label Operation Operand Comment

PORTN EQU 15 ; PORT = 15

In this example, the constant symbol PORTN is given the value 15.

A label used in an assembly language instruction or macro invocation represents the
memory address of the first byte of the instruction.

Label Operation Operand Comment

START MVI A, : CHARACTER = "2"

In this line, the label START represents the address of the first byte of the MVI instruction.

An address is relative to the base address (beginning address) of the section in which it
appears. At link time, relocatable sections are assigned a new base address. Therefore, any
symbol representing an address is relocated relative to its base address at link time. (See the
Address Values discussion in this section for more information on relative addresses.)

4-2 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Statement Fields
#

Operation Field

The operation field begins immediately after the label field. If the label is omitted, the
operation field may begin anywhere after the first character position in the line. The
operation field is terminated by a space, a tab, a return character, or a semicolon (indicating
the beginning of a comment field).

The word in the operation field indicates the type of action to be taken by the assembler. The
word may be an assembly language instruction mnemonic, an assembler directive, or a
macro invocation.

If the word in the operation field is an assembly language instruction, the assembler
translates the statement into a machine instruction.

Label Operation Operand Comment
START MVI A, non ; CHARACTER = "2"
MVI (an 8080A mnemonic) is translated into a machine instruction by the assembler.

An assembiler directive in the operation field specifies certain actions to be performed during
assembly. Assembler directives may or may not generate object code.

Label Operation Operand Comment

GLOBAL PORTN,OUTSUB

In this example, the assembler directive GLOBAL in the operation field declares PORTN and
QUTSUB as global symbols.

NOTE

The name of an assembly language instruction for a particular
microprocessor may be identical to an assembler directive. In this case, the
name of that assembler directive is changed. A list of any changed assembler
directive names are found in the appropriate Assembler Specifics section for
your microproCessor.

REV A FEB 1981 4-3

Statement Fields Language Elements—8500 MDL A Series Assembler Users
0 S

A macro name in the operation field specifies the macro definition block to be expanded.

Label Operation Operand Comment

MACRO Q@ ; MACRO QQQ DEFINED
ENDM
o . INVOCATION OF MACRO QQQ

In this example, the macro QQQ is invoked when QQQ appears in the operation field.

If the operation field does not contain an assembly language instruction, an assembler
directive, or a macro name, the assembler rejects the entire statement and prints an error
message. See the Assembler Specifics section of this manual for a list of your processor’s
instruction mnemonics. Assembler directives are presented alphabetically in the Assembler
Directives section of this manual. Macros are described in the Macros section of this manual.

Operand Field

The operand field specifies values required by the assembly language instruction, the
assembler directive, or the macro invocation in the operation field. The word in the operation
field determines the required type, number, and order of operands. For example:

Label Operation Operand Comment

START MVI A,men ; CHARACTER = "2"

The 8080A MVI instruction requires two operands: a register, followed by a value. In this
example, register A (a predefined symbol) and a string value are used.

The value in the operand field may be representad by an expression.
discussion in this section.) An expression may consist of the following:

® a numeric or string constant,
® a symbol, or

® a combination of constants and symbols with operators and functions.

Symbols appearing in the operand field may be predefined or user-defined. (See the Symbols
discussion in this section.) If a symbol appearing in the operand field is not predefined, it
must be defined in one of the following ways:

® the symbol must appear in the label field of an assembly language instruction, or of an
ASCII, BLOCK, BYTE, EQU, SET, or WORD directive; or

® the symbol must appear in the operand field of a GLOBAL, STRING, SECTION,
COMMON, or RESERVE directive.

4-4 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Statement Fields

—

The operand field may contain spaces to improve program readability. The spaces must not
be within symbols.

Label Operation Operand
BYTE 5,35,45,55
BYTE 5, 35, 45, 55

Both of the above statement lines produce identical results.

Comment Field

The comment field is optional, but may be included in any statement line. The comment field
begins with a semicolon (;) and ends with a return. All characters following the semicolon
are considered a part of the comment. Comments are used for program documentation and
have no effect on the object code produced by the assembler. If no other fields are used, the
comment field may begin anywhere in the statement line.

Label Operation Operand Comment

; SUBROUTINE OUTSUB -- OUTPUTS A CHARACTER
OUTSUB OUT PORTN ; OUTSUB STARTS HERE

In this example, the first statement has no effect on the object code produced, because the
semicolon (;) in the first column causes the entire line to be treated as a comment. In the
next line, the semicolon causes "OUTSUB STARTS HERE” to be treated as a comment.

Text substitution is the only type of action performed by the assembier within the comment
field. Text substitution is discussed later in this section. The single quote (') signals
substitution. Therefore, to include a single quote (') character within a comment, you must
precede the ' character with an up-arrow (A} character.

NOTE

The up-arrow (A) character cancels the special significance of the
immediately following character.

REV A FEB 1981 4.5

Symbols Language Elements—8500 MDL A Series Assembler Users

—

SYMBOLS

A symbol is a user-defined or predefined word that represents a value or an instruction.
Symbols make a program easier to read, and reduce the risk of error when the program is
modified.

User-defined Symbols

A user-defined symbol is a word or mnemonic that you create to represent a numeric value
(scalar or address), a string value, or a macro name. By using symbols you can refer to a data
value or a memory address without using the specific value.

For example, if you need to refer to a data value frequently within a program, that value can
be assigned to a symbol. Then, if you need to change that value, you only need to modify the
defining statement, rather than modify each statement that references the value.

PORTN EQU 15

In this statement the symbol PORTN is defined by the EQU directive to have the value of 15.
PORTN can be used throughout the program.

Constructing Symbols
A symbol consists of one or more characters beginning with a letter and containing only
letters, digits, periods, underscores, or dollar signs. Only the first eight characters are
considered significant; any additional characters are discarded. Some examples of valid user-
defined symbols are:

PORTN

OUTSUB

LOOP

LOOP.5

A123456%

TO DO

AVERYLONGSYMBOL (same as AVERYLON)

Defining Symbols

User-defined symbols are defined when they appear in: (1) the label field of assembly
lanugage instructions, macro invocations, and assembler directives, or (2) the operand field
of GLOBAL, SECTION, COMMON, RESERVE, MACRO, or STRING directives. User-defined
symbols are assigned values during the assembler’s first pass. When the symbols are
encountered in the second pass, they are replaced by the assigned values.

4-6 REV A FEB 1984

Language Elements—8500 MDL A Series Assembler Users Numeric Values

A symbol in the label field of an assembly ianguage instruction represents the address of the
first byte of that instruction. A label symbol allows you to transfer control to an instruction
without knowing its absolute address. For example, a destination address for a jump
instruction (JMP in 8080A) can be represented with a symbol.

LOOP INC A

JMP LOOP
LOOP is a user-defined symbol representing the address of the instruction INC {Increment).

When a symbol is used in the label field of an assembler directive, its meaning depends upon
the directive. Generally, the symbol represents a data constant or the memory address of
data. See the Assembler Directives section of this manual for the specific meaning in each
directive.

Generally, a symbol may not be redefined within a program. However, the SET directive may
be used to redefine a symbol previously defined by the SET directive. This allows you to
temporarily assign a value to an assembler variable during assembly.

Predefined Symbols

Predefined symbols include:
® assembler directives and options,
® assembly language instruction mnemonics, and

® processor register names and symbols.

The assembler directives and options are listed in the Assembler Directives section of this
manuai. See the Assembier Specifics section of this manual for the list of instruction
mnemonics and reserved words for your processor.

VALUES

The assembler recognizes two kinds of values: numeric and string.

Numeric Values

The assembler uses two types of numeric values: scalars and addresses. All numeric values
are treated as 16-bit (2-byte) numbers. Scalars are signed values. Addresses are unsigned
values.

Scalar Values

Scalar values are signed integers ranging from -32768 to 32767. (The two’s complement of
a positive number represents the corresponding negative integer.) Scalar values can be used
as numeric data within an assembly language program.

REV A FEB 1981 4-7

Numeric Values Language Elements—8500 MDL A Series Assembler Users

Address Values

An address value specifies a memory location. An unsigned 16-bit address takes a value in
the range O to 65535.

An address is defined relative to the beginning of the section in which it appears. The
assembler generates an object module (made up of one or more sections) with address
values relative to the beginning of each section. At assembly time, the beginning (base
address) of each relocatable section is zero. At link time, the linker relocates the individual
sections. (See the Linker section of this manual for a discussion on section relocation.) The
base address of each section is then redefined by the linker. The actual address of a byte is
unknown until after the linking process is complete.

During assembly, a location counter (which simulates the processor program counter) holds
the address of the object code being generated. The dollar sign ($), when used in the operand
field, represents the current value of the location counter (the address of the machine
instruction or data item currently being generated). For example:

Label Operation Operand
IF $ > OFFH

In this statement the current value of the location counter is compared with the value OFFH.

Numeric Constants

Numeric constants may be entered in decimal, binary, octal, or hexadecimal notation. The
assembler assumes that a number is in decimal unless a suffix letter identifies it as binary,
octal or hexadecimal. The following suffix letters are used:

® B denotes binary numbers.
1010B and 11111111B are binary numbers

® O (capital letter O, not zero) or Q denotes octal numbers.
377Q and 1777770 are octal numbers

® H denotes hexadecimal numbers.
1A2CH and OFFFFH are hexadecimal numbers.

NOTE

Numeric constants must begin with a numeric character. Any hexadecimal
number that has an alphabetic character in the first digit must be preceded
with a zero.

A numeric constant may be assigned to a symbol with the EQU directive.

4-8 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users String Values

PORTN EQU 15
In this example, PORTN is made synonymous with the constant 15.

Numeric Variables

During assembly, a numeric value may be assigned to an assembler variable with the SET
directive. An assembler variable allows temporary assignments to be made to a symbol.
When the variable is encountered, the current value is used. Rules for creating an assembler
variable follow the rules for creating a user-defined symbol. (See User-defined Symbols in

this section.}) A symbol used as an assembler variable must not have been previously defined.

COUNT SET 1

In this example, the symbol COUNT is an assembler variable and may be assigned various
numeric values with the SET directive. When the symbol COUNT is encountered by the
assembier, the current value is used. If another SET directive reassigns another value to
COUNT, the reassigned value is used.

String Values

Character strings are accepted by the assembler. Individual characters are translated into
their ASCIl representation (8 bits).

String Constants
String values entered as constants in an assembier program are enclosed in double quotes
)

"STRINGS"

The null string (””) contains zero characters. Any ASCIl character, with the exception of the
return character, may be included in a string constant. To include special characters, such as
a double quote (") or a single quote ('), precede the special character with an up-arrow (/).

NOTE

The up-arrow character (A\) cancels the special significance of the
immediately following character.

REV A FEB 1981 4.9

String Values Language Elements—8500 MDL A Series Assembler Users

25 A O

String Variables

A character string may be assigned to a string variable with the SET directive. The symbol to
be used as the string variable must be declared with the STRING directive before being used.
The STRING directive specifies the maximum length of the string variable. The maximum
fength (which defaults to 8) is enclosed in parentheses. For example:

STRING STVAR(10)
STVAR SET "CHARACTERS"

In this example, the symbol STVAR is a string variable. The maximum length for any string
assigned to the variable STVAR is ten.

The length of the string variable is the length of the character string currently assigned to the
variable. if the length of the character string is longer than the declared iength of the
variable, the character string is truncated and an error message is generated.

Conversions
A string constant may be assigned to a symbol with the EQU directive.

Label Operation Operand

SYM1 EQU "AB"

The string is converted to a two-byte numeric value. The numeric value is the ASCII
representation of the string. If the string is longer than two characters, the first two
characters are converted and an error message is generated. If the string length is one
character, the high-order byte of the resulting value is zero. The value of the null string (") is
zero. For example:

Character String Numeric Value
000OH
"A" 0041H
" 003FH
“AB” 4142H
"ABC"” 4142H (error message 085 is generated)
12" 3132H

For an ASCIlI-to-hexadecimal conversion table, see the Tables section of this manual.

If a numeric value is assigned to a string variable, the numeric value is converted to its string
representation. The string representation is six characters long. The first character is a zero
or minus (-) depending on the sign of the number. The remaining five characters are the
decimal representation of the value, padded with leading zeros (if necessary). The following
table shows how values are converted to their string representation.

4-10 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Text Substitution

—

Value String
0 "000000"
_1 11_00001 "
400 ”000400"
200H ”"000512"

For example:
STRING STRVAR(10)
STRVAR SET -1

STRVAR now has the value "-00001".

TEXT SUBSTITUTION

String values can be substituted within a statement line during assembly by the use of string
variables. The single quote (') is the substitution delimiter. When the assembler encounters a
string variable enclosed within single quotes ('variable’), the variable is replaced by the
current string value assigned to that string variable.

When processing a statement, the assembler first performs all indicated text substitutions.
For example:

Label Operation Operand Comment

STRING OP
opP SET "WORD"
'OP!’ 1,2,3 ; DO 'OP' TO 1,2,3

When the assembler scans the line "’OP’ 1,2,3", it first performs the following substitution:

WORD 1,2,3 ; DO WORD TO 1,2,3
The statement line then contains the assembler directive WORD.

During assembly, the percent sign (%) represents the current section name. With the use of
text substitution, the current section name can be inserted into the assembly language
program. For example:

Label Operation Operand Comment

STRING SECNAME(8)

SECNAME SET mrgen ; SAVE CURRENT SECTION Nu.'%
SECTION] ; SWITCH IO NEW SECTION
RESUME 'SECNAME' ; SWITCH BACK TO PREVIOUS SECTION

Parameter substitution performed during macro expansion is a form of text substitution. See
the Macros section for information on parameters.

REV A FEB 1981 4-11

Expressions Language Elements—8500 MDL A Series Assembler Users

s O

EXPRESSIONS

Introduction

An expression is a combination of constants, variables, or functions connected by operators
that yields a numeric or string value. The assembler accepts expressions in the operand field.
An operand expression is evaluated at assembly time, and the numeric or string value is
used. Table 4-1 lists the operators and functions that can be used in expressions.

Table 4-1
Expression Operators and Functions

Type Operator/ Function Meaning

Unary Arithmetic + Identity
- Sign inversion

Binary Arithmetic * Multiplication

/ Division

+ Addition

- Subtraction

MOD Remainder

SHL Left shift

SHR Right shift
Unary Logical AN NOT (bit inversion)
Binary Logical & AND

Inclusive OR

i! Exclusive OR

Relational = Equal

<> Not equal

> Greater than

>= Greater than or equal

< Less than

<= Less than or equal
String : Concatenation
Logical Functions BASE Base address comparison

DEF Symbol definition
Numeric Functions ENDOF End of section

HI High byte

LO Low byte

SCALAR Conversion to scalar
String Functions NCHR Number of characters

SEG Substring

STRING Conversion to string

REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Operators

e

Hierarchy

In an expression involving more than one operator, the operators are performed according to
a predefined order of precedence. Table 4-2 shows the operator hierarchy.

Table 4-2
Hierarchy of Operators

Precedence | Operators

BASE DEF ENDOF HI LO NCHR SCALAR SEG STRING (functions)
: (concatenation)

+ - (unary plus and minus) \ (logical NOT)

* / MOD SHL SHR (multiplication, division, shifts)

+ - (addition, subtraction)

= <> > >= < <= (relational)

& (logical AND)

i 11 {iogicai OR, exciusive OR)

0 NOOR WD =

Expression operators at the top of the table have the highest precedence and are performed
first. Operators at the bottom have the lowest precedence and are performed last. Operators
on the same line have equal precedence, and are performed from left to right within the
expression.

Parentheses may be used to override the order of precedence. The most deeply nested
subexpressions are evaluated first. It is possible to create an expression that is too complex
for the assembler to evaluate. If the expression entered is too complex, an expression error
message is displayed.

Operators

An operator within an expression acts upon one or more terms. The operators and types of
terms permitted for each operator are discussed in the following paragraphs.

If an operator requires a numeric operand and a string operand is provided, the string
operand is converted to a numeric value, as described in String Conversions (earlier in this
section).

REV A FEB 1981 4-13

Operators Language Elements—8500 MDL A Series Assembler Users

Arithmetic Operators

Arithmetic operators act on numeric values.

+ Unary plus identity operator: does not change the value of the term. May be
applied to scalar or address values.

- Unary negative Indicates sign inversion. (Two's complement.) May be applied to
scalar values only.

¥ Multiplication Multiplies two scalar values.
/ Division Divides two scalar values.
+ Addition Adds two terms (scalar or address), as follows:

Scalar + Scalar = Scalar

Scalar + Address = Address
Address + Scalar = Address
Address + Address = error

- Subtraction Subtracts two terms (scalar or address), as follows:
Scalar - Scalar = Scalar
Address — Scalar = Address
Address - Address = Scalar (addresses must have same base)
Scalar - Address = error

MOD Remainder The remainder that results from dividing the first term by the
second. The sign of the returned value is determined by the sign of
the second term. For example:

X Y X MOD Y
2 2 0

5 2 1

5 -2 =i

-5 2 1

-5 -2 -1

4-14 REV A FEB 1081

jus = B+

Language Elements—=8500 MDL A Series Assembler Users Operators

SHL Left shift The first term is shifted to the left the number of bit positions
specified by the second term. Both terms must be scalar values.
The second term (the number of bits to be shifted) must be a non-
negative scalar value. For example:

1 SHL 1 results in 2

Lofo]o]ofo[o]o[o]ofofofofofofo s |

LofofofoJofofofo]ofofofo]o]o]1]o |

When the bits are shifted, the leftmost bits are discarded; the
vacated bit positions on the right become zeros. For example:

OFOFOH SHL 1 results in OE1EOH

Lil1[1]1]ofo]ofofs]1]1]1]ojo]o]o |

[1]1]+]ofoJofo[s]s]1]1]ofofofo o]

If the second term is greater than 16, the result is zero, and an
error message is generated.

SHR Right shift The first term is shifted to the right the number of bit positions
specified by the second term. Both terms must be scalar values.
The second term (the number of bits to be shifted) must be a non-
negative scalar value. For example:

2 SHR 1 results in 1
[ofoJo[oJofoJo[of[ofofoofo]o]1]o |

[ofolojofofe]ojojojojojojojojoit]

When the bits are shifted, the rightmost bits are discarded; the
vacated bit positions on the left become zeros. If the second term is
greater than 16, the result is zerc, and an error message is
generated.

REV A FEB 1981 4-15

Operators Language Elements—8500 MDL A Series Assembler Users

Logical Operators
The logical operators, NOT (\), AND (&), OR (!), and exclusive-OR (1), correspond to their
Boolean algebra equivalents, as shown in the following truth table.

X Y \ X X&Y XY Xy
0 1 0 0 0
0 1 1 0 1 1
1 0 0 0] 1 1
1 1 0 1 1 0
\ NOT Returns the one’s complement of the following term by complementing
each bit in the term. (Returns a 1 if the bit is O, and returns a O if the bit
is 1))

\OFOFH results in OFOFOH

[oJofofof1]1]r]1]ofofofoa]]1]1]

L+]+[r]+]ojojofo]1]1]1]1]ojofo]o]

& AND Returns the logical AND of two terms. Compares the terms bit-by-bit,
returning a 1 if both bits are 1; otherwise returns a O.

Example:
DVAL EQU OFOFOH & OCCCOH

1j1(1|1(ojofjojoj1{1|1|1j0|010]}0
1/]0/1]0|1j0|1]0({1]|O0j1|0|O0|0(O]|O

DVAL is assigned OCOCOH

L1fo]r]ofofofofo]1]o]1]oo]o]o]o]

1 OR Returns the logical OR of two terms. Compares terms bit-by-bit; returns
a 1 if either bit is 1, returns a O if both bits are O.

Example:
RVAL EQU OFOFOH ! OCCCOH

1(1}{1{1]/0]{0}0}j0{1[1[1|1]0]|0]0|0
1foj1({o0yj1j0|1j0|1|0f(1|0|j0j0O}{0O}|O

RVAL is assigned OFCFOH

[af1[a]a]s]ofrTof1]1][1]1]ofo]o]fo]

4-16 REV A FEB 1981

Language Eiements—8500 MDL A Series Assembler Users Operators

11 Exclusive-OR Returns the logical exclusive-OR of two terms. Compares terms bit-by-
bit and returns a 1 when the bits are different, and a O when the bits are
the same.

Example:

ERVAL EQU OFOFOH !! OCCCOH

111]1}1|/0|[0]|0|O|1|1[1]|1[0{0]O|0
110]1]0 o(f1/0|1|0(1|/0|0|0]|0O0|O

-

ERVAL is assigned BASQH

S ed

[o[]o]1[1]o]1]o]of1]o[1]ofo0]0]

Relational Operators

Relational operators compare two terms and return the value -1 for a true expression and O
for a false expression.

= Equal

<> Not equal

> Greater than

>= Greater than or equal
< Less than

<= Less than or equal

~ P Y A IE i s o o me o tamem ~f amnnalas srnaliian —~ P T —~ P] e
Relational operators allow comparison of scalar values, address values, and sti i

Scalar values are compared as signed numeric values. For example:

Label Operation Operand

COUNT SET 1
IF COUNT < 5
IF COUNT > -1
F EQU 7 = COUNT

The relational operators in this example compare signed numeric (scalar) values.

REV A FEB 1981 4-17

Operators Language Elements—8500 MDL A Series Assembler Users

Address values are compared as unsigned numeric values. Address values are compared as
offsets from their base address. Address values from different sections cannot be compared.

START MVI A,men

NEXT ~ MVI H,0000
T EQU START < NEXT

The less than (<) operator in this example compares two unsigned numeric (address) values
within the same section.

If only one term is an address, a relational operator performs an unsigned numeric
comparison between the scalar and the address offset.

String values are compared numerically according to the ASCII collating sequence. (See the
Tables section of this manual.) Comparison proceeds left to right, character-by-character.
Two strings are considered equal if they have the same length and contain identical
character sequences. If they are identical in sequence but one string is longer than the other,
the longer string is considered greater. The following examples show the results of various
string comparisons:

"AB"” = "AB" results in -1 (true)

"A" > "B" results in O (false) A less than B

"ABC"” > "ABC " results in O (false) the right term is longer
"ACB"” > "ABC"” results in -1 (true) C greater than B

If only one term is a string, the first two characters of the string are converted to a scalar
value and a numeric comparison is performed.

The types of comparisons are summarized in Table 4-3.

Table 4-3
Types of Comparisons with Relational Operators
Left O d Right Operand
e eran
P String Scalar Address

STRING String Signed Numeric Unsigned Numeric
Comparison Comparison Comparison

SCALAR Signed Numeric Signed Numeric Unsigned Numeric
Comparison Comparison Comparison

ADDRESS Unsigned Numeric | Unsigned Numeric Unsigned Numeric
Comparison | Comparison Comparison

REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Functions

—

String Operator
Concatenation Combines two strings into a single string. For example:

Label Operation Operand

STRING STR1(5),STR2(6),STR3(11)
STRt SET "HELLO"
STR2 SET " THERE"
STR3 SET STR1 : STR2

STR3 now is "HELLO THERE".

If the resulting string is assigned to a variable, the length of the
resulting string must not exceed the length specified for that variable by
the STRING directive.

Numeric values may not be concatenated.

Functions
The following predefined functions return a value when used in an expression:
® Logical Functions
BASE—Determines whether two values have a common base.
DEF—Determines if a symbol has been defined.

® Numeric Functions
ENDOF—Returns the address of the last byte of a section.
Hl—Returns the high byte of an address.

LO—Returns the low byte of an address.
SCALAR—Converts an address value to a scalar value.

® String Functions

NCHR—Returns the current length of a string variable.
SEG—Returns a substring of a string.
STRING—Converts a scalar value to a string.

Each of these functions is described in detail in the following pages. The same conventions
as described in the Assembler Introduction section of this manual are used in these

descriptions.

REV A FEB 1981 4-19

Function: BASE Language Elements—8500 MDL A Series Assembler Users

Determines whether two values have common base

L .

SYNTAX
BASE(numvalue1,numvalue2)
PARAMETERS
numvalue Any expression that evaluates to a numeric value. Usually a label

symbol.

EXPLANATION

The BASE function compares two numeric values to see if they have the same base. The
BASE function returns a -1 (true) if the values have the same base. The BASE function
returns a O (false) if the values do not have the same base.

All addresses within a section share the same base. All scalar values share the same base.
Scalar values and address values do not have the same base. Each SECTION, COMMON, and
RESERVE directive defines a new address base. The default section (any statements not
preceded by a SECTION or COMMON directive) has a separate base. All unbound globals are
assumed to have unique bases.

The BASE function is typically used to compare label symbols in a conditional assembly
statement.

EXAMPLES
Label Operation Cperand
Q EQU 5
’ > both scalars
R EQU 15
IF BASE(Q,R)
. Statements assembled
because Q and R share
common base

ENDIF

In this example, the two scalar values Q and R are compared. Since both Q and R represent
scalar values, they share a common base. The function BASE(Q,R) returns a -1 (true) and the
statement lines between IF and ENDIF are assembled.

4-20 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Function: BASE

Determines whether two values have common base

—

Label Operation Operand

SECTION SEC1

HERE BLOCK 10C0H
THERE BLOCK 100H
IF BASE (HERE, THERE)
. Statements assembled
. because HERE and THERE
. are in the same section
ENDIF
In this example, the statements between IF and ENDIF are assembled because HERE and

y this
THERE share the same base.

Label Operation Operand

SECTION SEC2

HERE BLOCK 100H
COMMON WKSPACE
THERE BLOCK 100H
IF BASE(HERE, THERE)
. Not assembled
because HERE and THERE
. not in same section
ENDIF

In this example, the statements between IF and ENDIF are not assembled because HERE and
THERE do not share the same base.

Label Operation Operand

THERE BLGCK 100H
IF BASE ($,THERE)
. | Only assembled if
. THERE isin the
. J‘ current section
ENDIF

In this example, the statements between IF and ENDIF are assembled if THERE is in the
current section. The dollar sign ($) represents the current value of the location counter.

REV A FEB 1981 4-21

Function: DEF Language Elements—8500 MDL A Series Assembler Users
Determines if symbol is defined
... - -]

SYNTAX
DEF(symbol)
PARAMETERS
symbol Any user-defined symbol.

EXPLANATION

The DEF function tests whether a symbol has been defined during the current assembler
pass. (See the Assembler Introduction section of this manual for a description of the two
passes of the assembler.) A value of -1 (true) is returned if the symbol is defined. A value of O
(false) is returned if the symbol is not defined.

EXAMPLES

Label Operation Operand

7 Q EQU 0
IF DEF(Q)
WORD 15
BYTE 5
ENDIF

In this example, the semi-colon (;} in the first line flags the line as a comment and the line is
not assembled. Therefore, the statements after the IF directive are not assembled, since Q
has not been defined in the current assembler pass. If the semicolon is removed, the IF
condition becomes true and the statements are assembled.

4-22 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Function: ENDOF

Returns end address of section
T]

SYNTAX
ENDOF(section-name)
PARAMETERS
section-name The name of a section defined in the assembler source program.

EXPLANATION

The ENDOF function returns the address of the last byte of a section. The linker may relocate
the individual sections during linking. Therefore, the ENDOF function is evaluated at link
time. {The Linker section of this manual discusses how sections are relocated.) Further
arithmetic operations may not be performed on the result of an ENDOF function.

EXAMPLES

Label Operation Operand

RESERVE STACK, 100
LXT SP, ENDOF (STACK)

This 8080A example reserves 100 bytes for the stack (STACK) and loads the stack pointer

register (SP) with the address of the end of the stack. The stack pointer register holds the
address of the high byte of memory reserved for STACK.

REV A FEB 1981 4-23

Function: HI Language Elements—8500 MDL A Series Assembler Users

Returns high byte of numeric value
- - e

SYNTAX

HI{numeric-expression)

PARAMETERS

numeric-expression Any expression that returns a numeric value, either scalar or address.

EXPLANATION

The HI function returns the most significant byte of a numeric expression. The result is a
one-byte numeric value. The numeric expression may be either an address or a scalar value.
If the expression is an address, further operations may not be performed on the result.

EXAMPLES

Label Operation Operand

SECTION TABLE, INPAGE

Q BLOCK 50
R BLOCK 50
SECTION MAIN
MVI H,HI (TABLE)
MVI L,LO(Q)
MOV AM
MVI L,LO(R)
MOV M,A

In this 8080A example, the high byte of the beginning address of the section TABLE is loaded
into the H register. Both Q and R will have the same high byte because INPAGE defines the
section to be within one page. (See the Assembler Directives section for more information on
the INPAGE relocation-option for sections.) The low byte of the addresses for Q and R is
loaded into the L register. Data can be transferred without changing the H register.

4-24 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Function: LO
Returns low byte of numeric value

00—

SYNTAX

LO(numeric-expression)

PARAMETERS

numeric-expression Any expression that results in a numeric value, either scalar or
address.

EXPLANATION

The LO function returns the least significant byte of a numeric expression. The result is a
one-byte numeric value. The numeric expression may be either an address or a scalar value.
If the expression is an address, further operations may not be performed on the result.

EXAMPLES

See the HI function example.

REV A FEB 1981 4-25

Function: NCHR Language Elements—8500 MDL A Series Assembler Users

Returns number of characters in string

SYNTAX

NCHR(string-expression)

PARAMETERS

string-expression Any expression that returns a string.

EXPLANATION

The NCHR function returns the current number of characters in the specified string. The
result is a numeric value.

NOTE

The current length of a character string is not necessarily the same as the
maximum length of a string symbol as declared with the STRING directive.
See the Assembler Directives section of this manual for information on the
STRING directive.

EXAMPLES

The following example shows one use of the NCHR function within a macro repeat block:

Label Operation Operand

STRING STR(5)
STR SET "HELLO"
Q SET 1
REPEAT Q <= NCHR(STR)
ASCII SEG(STR,Q,1)," "
Q SET Q+1
ENDR

The repeat loop is repeated for Q = 1, 2, 3, 4, and 5. When Q = 6, the REPEAT condition is
false and the assembly continues with the statement following ENDR. The ASCII
respresentation of the individual characters "H E L L O " are stored in consecutive bytes.

4-26 REV A FER 1081

Language Elements—8500 MDL A Series Assembler Users Function: SCALAR
Converts address to scalar

o S S

SYNTAX
SCALAR(address)
PARAMETERS
address Any expression that returns an address value.

EXPLANATION

The SCALAR function converts an address (unsigned numeric) value into a scalar (signed
numeric) value.

The only arithmetic operations that can be performed directly on address values are: addition
with a scalar value, and subtraction. To perform any other operations on address values, you
must first convert the addresses to scalar values with the SCALAR function.

EXAMPLES
Label Operation Operand
TABLE BLOCK 100
XXX EQU SCALAR(TABLE) / 2 + TABLE

This example shows an arithemetic operation (division by 2) performed on an address value.
The address value is converted to a scalar value by the SCALAR function.

REV A FEB 1981 4-27

Function: SEG Language Elements—8500 MDL A Series Assembler Users

Returns substring

SYNTAX
SEG(string, start-position,char-count)
PARAMETERS
string Any expression that returns a character string.
start-position A numeric expression that indicates the position in the string of the first

character of the substring.

char-count Any numeric expression that evaluates to the number of characters to
be returned.

EXPLANATION
The SEG function returns a substring of a character string. The first character in the
substring is the character in the start-position. Each successive character is included until

char-count characters are included or the end of the string is encountered.

The following table shows various substrings returned by the SEG function:

Expression Substring
SEG("ABCDE",2,2) "BC”
SEG(”"ABCDE",4,3) "DE"
SEG("ABCDE",6,1)
SEG("ABCDE",1,6) "ABCDE"

Label Operation Operand

STRING STR(12), LST(1)
STR SET "CHARACTERS"
LST SET SEG (STR, NCHR(STR), 1)

I__ number of characters
to be returned
first character of substring

{NCHR function returns the
number of characters in STR)
‘—— character string

Although the character string STR has a maximum length of 12, NCHR(STR) returns the
current length which is 10. The start-position of the substring is the tenth character. The
char-count is 1. Thus, the tenth character "S” is assigned to the string variable LST.

4-28 REV A FEB 1981

Language Elements—8500 MDL A Series Assembler Users Function: STRING

Converts scalar to string
[

SYNTAX
STRING(scalar)
PARAMETERS
scalar Any expression that evaluates to a scalar value.

EXPLANATION

The STRING function converts a scalar value to its string representation. The string
representation is six characters iong. The first character is a zero or minus (-} depending on
the sign of the number. The remaining five characters are the decimal representation of the
value, padded with leading zeros (if necessary). The following table shows how values are
converted to their string representation.

Value String
0 "000000”
-1 "-00001"
400 "000400"
200H ”000512"

EXAMPLES
Label Operation Operand
STRING MATSIZE(6), DIGIT4(1)
XVAL SET 4
YVAL SET 50
MATSIZE SET STRING(XVAL ¥ YVAL)
DIGIT4 SET SEG(MATSIZE,4,1)

This example converts the value of XVAL times YVAL (4 * 50 = 200) to the string “000200".
DIGIT4 is defined to be the fourth character in the string MATSIZE ("2")

REV A FEB 1981 4-29

8500 MDL A Series Assembler Users

Section b
ASSEMBLER DIRECTIVES

ASSEMBLER DIRECTIVE INDEX

Page Page
Listing Control Directives File Inclusion Directive
LIST—Turns on listing options 5-23 INCLUDE—Assembles source code from another file ... 5-22
ISI‘Z)(I:IFST*Jurnf off listing optl_onsr.\..l.'..> 5-29 Conditional Assembly Directives
o ;_Aslms .obal ni\/\? page 1n the I{St!ng“"”"“"‘ 223 ELSE—Begins an aiternate conditionai biock 5-10
P CE—Cnserts ank lines into tbe' Ilst:ng """"""" -45 ENDIF—Ends a conditional assembly block 5-12
STITLE—Creates a'llsvtmg page su e 5-46 IF—Begins a conditional assembly block 5-19
TITLE—Creates a listing page title 5-49
WARNING—Displays a warning message............... 5-50 Module Definition Directives
Symbol Definition Directives COMMON—Declares a common section 5-6
EQU—Assigns a value to @ symbol 5-15 END—Marks the end of the source module............... 5-11
SET—Assigns a value to a variable.................... 5-42 GLOBAL—Declares giobal symboi(s) 5-17
STRING—Declares a symbol to be a string variable 5-48 NAME-—Names the object module 5-28

ORG—Assigns an address to the location counter 5-30
R — i]

Data Storage Directives REgEmIEE_:;Sf;V::; sedct:)r?tgf mefmory. REETERRTRPREES 5-37
ASCll—Generates ASCIl data 53 L OTION _Dasiaras o sroora or 0 8 SECUON v 5-39
BLOCK—Reserves a data block 5-4 S 8 program Section................... 5-40
BYTE—Generates byte(s) of data 5-5
WORD—Generates word(s) of data..................... 5-51 ILLUSTRATIONS
Macro Definition Directives Fig.
ENDM—Marks the end of a macro definition 5-13 No. Page
ENDR—Marks the end of a _repetmve assembly block .. 5-14 5-1 Allowed Forms of IF Block Nesting............. 5-20
EXITM-—Stops macro expansionc..ooevveeunnn... 5-16 .
MACRO—Begins a macro definition.................... 527 52 Allowed Forms of REPEAT Block Nesting....... 5-35
REPEAT—Begins a repetitive assembly block 5-34

REV A FEB 1981 5-i

8500 MDL A Series Assembler Users

Section 5

ASSEMBLER DIRECTIVES

This section describes the directives you may use when programming for the Tektronix

Assembler. The directives are arranged in alphabetical order for easy reference. A functional
index appears at the front of this section to help you when you do not know a directive by
name.

Each assembler directive description consists of the following parts: a syntax block,
parameter definitions, an explanation of the use and limits of the directive, and one or more
examples of its use.

The syntax block shows the required format of the directive. Assembler directive statements
may contain information in any of the four fields: label, operation, operand, and comment.
Since the comment field is strictly optional for any directive, it does not appear in the syntax
block.

The syntax blocks in this section use the notation conventions explained in the Assembler
Introduction section of this manual.

Label Operation Operand

[symbol] DIRECT string-expression[,string-expression]...

The above example shows the syntax for DIRECT, a fictional directive. You may interpret this
syntax block as follows:

e A label is optional for this directive.
® The operation field must contain the word "DIRECT".

® The operand field must contain at least one string expression. If two or more string
expressions are entered, they must be separated by commas. The number of string
expressions is limited only by the maximum line length (127 characters).

REV A FEB 1981

Labels Assembler Directives—8500 MDL A Series Assembler Users
.. _ .]

LABELS

For each assembler directive, a label may be required, optional, or prohibited, depending on
the directive.

® Only the EQU and SET directives require labels. EQU and SET each assign the value in
the operand field to the symbol in the label field.

® Only the ENDM directive must not have a label.

® The following directives generate object code and therefore often have labels. The label
is assigned the address of the first byte of code generated.

ASCI BLOCK BYTE WORD

® The following directives affect the location counter but do not generate object code, so
they do not normally have labels. The value assigned to the label depends on the
directive.

COMMON ORG RESERVE RESUME SECTION

® All other directives (listed below) do not even affect the location counter and so do not
normally have labels. The label, if any, takes the current value of the location counter.
In the dictionary entry for each of these directives, the label is shown as optional but is
not discussed as a parameter.

ELSE EXITM LIST PAGE STRING
END GLOBAL MACRO REPEAT TITLE
ENDIF IF NAME SPACE WARNING
ENDR INCLUDE NOLIST TITLE

5-2 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users ASC"
Generates ASCIl data

—

THE ASSEMBLER DIRECTIVE DICTIONARY

SYNTAX
Label Operation Operand
[symbol] ASCII string-expression[,string-expression]...
PARAMETERS
symbol A user-defined label representing the address of the first character in
the string.

string-expression Any expression that yields a string value.

EXPLANATION

The ASCIl directive stores the ASCII codes for the characters of the specified string(s) in
consecutive bytes of the object program. Refer to the Tables section of this manual for an
ASCIl conversion table.

EXAMPLES
Label Operation Operand
CHESSMEN ASCII "PAWN ROOK KNIGHT"
ASCII "BISHOP","QUEEN " ,"KING "

These two statements generate 36 consecutive bytes of ASCIl code: one 18-character string
and three B-character strings, stored as a single 36-character sequence. CHESSMEN is the
address of the first character from the first string. The following hexadecimal object code is

generated:

source: P W N R 0O K K N I G H T
object: 50 41 87 4E 20 20 52 4F 4F 4R 20 20 4B 4E 49 47 438 54
source: B I S H O P G U & E N K i N G

object: 42 49 53 48 4F 50 51 55 45 45 4E 20 4B 49 4E 47 20 20

REV A FEB 1981 5-3

BLOCK Assembler Directives—8500 MDL A Series Assembier Users

Reserves block of memory
L e SR

SYNTAX
Label Operation Operand
[symbol] BLOCK byte-count
PARAMETERS
symbol A user-defined label that represents the address of the first byte of the
block.
byte-count The number of bytes to be reserved: any positive scalar expression.

EXPLANATION

The BLOCK directive reserves a specified number of bytes. BLOCK is used primarily to
allocate memory for data that may change during program execution.

The byte-count expression must yield a positive scalar value. Every symbol in the expression
must have been defined previously.

EXAMPLES
Label Operation Operand
LASTNAME BLOCK 20
SSN BLOCK 1
AGE BLOCK 1
SALARY BLOCK 2

These statements allocate space for a 20-character name, an 11-character social security
number, an age in the range O to 255, and a salary in the range O to 65535.

54 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users BYTE
Generates byte(s) of data
”

SYNTAX
Label Operation Operand
[symbol] BYTE byte-value[,byte-value]...
PARAMETERS
symbol A user-defined label that represents the address of the first byte of data.
byte-value Any expression that yields a scalar in the range -128 to 255.

EXPLANATION

The BYTE directive stores the specified values in consecutive bytes of the object program. if a
value is outside the range -128 to 255, it is truncated to 8 bits and the following message is
displayed:

#x%%% TRROR 035: Value truncated to byte

EXAMPLES
Label Operation Operand
MONTHS BYTE 31,28,31,30,31,30
BYTE 31,3%,36,3%,30,31

Twelve bytes of object code are generated. The Nth byte contains the number of days in the
Nth month. MONTHS is the address of the first byte.

REV A FEB 1981 5-5

CO MM ON Assembler Directives—8500 MDL A Series Assembler Users

Declares common section
L

SYNTAX
Label Operation Operand
[symbol] COMMON section-name[,relocation-type]
PARAMETERS
symbol A user-defined label (usually omitted) that represents the address of the

first byte of the common section.
section-name The name assigned to the section.

relocation-type An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE—The common section is relocated to the beginning of a page of
memory. See the Assembler Specifics section of this manual for the
page size for your microprocessor.

INPAGE—The common section may be relocated to any address, so
long as the entire section lies within one page of memory.

ABSOLUTE—The section is not relocated.
If you do not specify PAGE, INPAGE, or ABSOLUTE, the relocation type

defaults to byte-relocatable: the relocated common section may begin at
any byte in memory.

EXPLANATION

The COMMON directive declares a section of type COMMON and defines the name and
relocation type of the section. The contents of the section are defined by the statements
following the COMMON directive, up to the next SECTION, COMMON, RESERVE, or
RESUME directive.

Different source modules may declare the same common section, and thus share the
contents of that section. (See Example 1.) The relocation type of the section must be the
same in every module in which the section is declared.

The linker assigns the same starting address to all common sections with the same name.
Memory is allocated for the largest section with that name. (See Example 2.)

You may use the directives ASCII, BYTE, or WORD to initialize values in a common section.
{See Example 3.) If two or more modules specify values for the same location in a common
section, the module linked last takes precedence; neither the linker nor the LOAD command
flags the error.

5-6 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users COM M 0 N

Declares common section
X

The name of a common section is a global symbol whose value is the address of the first byte
of the section. A section name should not be declared with a GLOBAL directive in any
module in which the section is defined with a COMMON directive.

EXAMPLES

COMMON Example 1

This example illustrates how program modules can communicate with each other through
values stored in a common section.

Assume that source modules A, B, and C each contain the following common section

definition:
Label Operation Operand
COMMON CUSTOMER
CNAME BLOCK 30
ADDRESS BLOCK 30
CITY BLOCK 16
STATE BLOCK 2

During program execution, module A might define the customer’s name, module B might
define the address, and module C might define the city and state. All 78 bytes of customer
information in the common section may be used or changed by any of the three modules.

REV A FEB 1981 5-7

CO M MO N Assembler Directives—8500 MDL A Series Assembler Users

Declares common section
L ____________________________________ "= =]

COMMON Example 2

A common section may also be used as a scratch area. Some subroutines use blocks of
memory for temporary storage. If all modules use the same common section for temporary
storage, less memory is required than if each module uses a different block of memory.

This example illustrates:
® how a common section may be used as a scratch area by one or more modules; and
® how the linker treats common sections with the same name but different lengths.

In source module A, the following statements define common section SCRATCH:

Label Operation Operand
COMMON SCRATCH

X1 BLOCK 4

X2 BLOCK 6

In source module B, SCRATCH is defined as follows:

COMMON SCRATCH
1 BLOCK 5
Y2 BLOCK 10

At link time, one area of memory is allocated to section SCRATCH. The size of the area is 15
bytes, which is the length of the larger section named SCRATCH. Both subroutines may use
this area of memory.

A 8
X1 1 vi |
4 2
bytes 3 > 5
bytes
a4
71 X2 5 J
6 v2)
6 7
bytes 8
9
10 10
11 ? bytes
12
13
14
15 J

3575-6

b-8 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users

COMMON

Declares common section

COMMON Example 3

This example demonstrates how you may initialize data in a common section.

Source module A defines common section CALENDAR and provides text for array DAYS:

Label

MONTHS
DAYS

Operation Operand

COMMON CALENDAR

BLOCK 36

ASCII "SUNMONTUEWED"
ASCII "THUFRISAT"

Source module B also defines CALENDAR and provides text for array MONTHS:

CALENDAR

"JANFEBMARAPR"
"MAYJUNJULAUG"
"SEPOCTNOVDEC"

MONTHS

DAYS

COMMON
ASCII
ASCIT
ASCII
BLOCK

21

A and B both specify the same length for common section CALENDAR (57 bytes).

When the section is loaded into

bytes source:
1-18 object:

bytes source:
19-36 object:

bytes source:
37-54 object:

bytes source:
55-57 object:

REV A FEB 1981

J

A

N F E

4A 41 4E 46 45

U
55

L A U
4C 41 55

N M O
4E 4D 4F

54

memory, its contents

B M A R

42 4D 41 52 41 50

G S E P
47 53 45 50

N T U E
4E 54 55 45

A

0
aF

w
57

P

C
43

will be as follows:

R M A Y J U N)
52 4D 41 59 4A 55 A4E

T N OV D E C
54 4E 4F 56 44 45 43 |

D T H U F R |
44 54 48 55 46 52 49

> MONTHS

> DAYS

59

ELS E Assembler Directives—8500 MDL A Series Assembler Users

Begins alternate conditional block

570 S S S

SYNTAX

Label Operation Operand
[symbol] ELSE

EXPLANATION

The ELSE directive separates the branches of an IF...ELSE...ENDIF block.

If the conditional expression in the IF directive is nonzero (true), the statements between the
IF directive and the ELSE directive are assembled. Otherwise, the statements between the
ELSE directive and the ENDIF directive are assembled.

EXAMPLES

Label Operation Operand Comment

IF YEAR MOD 4 = O . .
NDAYS EQU 366 ; LEAP YEAR <__dA.S§e.g|b'id'j‘YEAR is
ELSE visible by 4.
. Assembled if YEAR is
NDAYS Eﬁ%n 365 ; NOT LEAP YEAR —m——— osee

If the value of YEAR is evenly divisible by 4, the first EQU directive is assembled and the

symbol NDAYS is assigned the value 366. Otherwise the second EQU directive is assembled
and NDAYS takes the value 365.

5-10 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users END

Ends source moduie

SYNTAX
Label Operation Operand
[symbol] END [transfer-address]
PARAMETERS

transfer-address The address of the first instruction to be executed.

EXPLANATION

The END directive marks the end of the source moduie. if the source moduie contains no
END directive, assembly continues to the end of the last source file named in the ASM
command line.

The transfer address, if present, is the address of the first instruction to be executed when
the program is run. The transfer address is usually specified in a source module, often in the
module that contains the main program. However, the transfer address can also be defined
or changed at link time. (See the TRANSFER command in the Linker section of this manual.)
If more than one module contains a transfer address, the transfer address in the first module
linked is used.

EXAMPLES
Label Operation Operand
START XRA A
END START

In this example, END is the last statement in the main program source module. START is the
transfer address: program execution starts with the 8080A instruction XRA A.

REV A FEB 1981 5-11

EN D IF Assembler Directives—8500 MDL A Series Assembler Users

Ends conditional assembly block
L e

SYNTAX

Label Operation Operand
[symbol] ENDIF

EXPLANATION

The ENDIF directive marks the end of an IF...ENDIF or IF...ELSE...ENDIF block of statements.
See the IF directive.

5-12 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users E N D M
Ends macro definition

—

SYNTAX

Label Operation Operand
ENDM

EXPLANATION

The ENDM directive marks the end of a macro definition. See the MACRO directive.

The ENDM directive must not have a label.

REV A FEB 1981 5-13

ENDR . .
Ends REPEAT block Assembler Directives—8500 MDL A Series Assembler Users

SO S S

SYNTAX

Label Operation Operand
[symbol] ENDR

EXPLANATION

The ENDR directive marks the end of a REPEAT...ENDR block of statements. See the REPEAT
directive.

5-14 : REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users _ EQU
Assigns value to symbol

#

SYNTAX
Label Operation Operand
symbol EQU numeric-value
PARAMETERS
symbol A user-defined symbol to be assigned a value by this statement.
numeric-value Any numeric expression. Each symbol in the expression must have been
defined previously.
EXPLANATION

The EQU directive assigns a value to a symbol. The symbol cannot be redefined in the same
source module.

A symbol defined in an EQU directive may be used by any statement in the module, with the
following restriction: a BLOCK, EQU, IF, ORG, REPEAT, SET, or STRING directive that refers
to the symbol must not precede the EQU directive that defines the symbol.

EXAMPLES
Label Operation Operand Comment
MVI B, ROWS ; NUMBER OF ROWS TO B REGISTER.
MVI C,COLS ; NUMBER OF COLUMNS TO C REGISTER.
ROWS EéU 10 ; DEFINE NUMBER OF ROWS...
COLS EQU 3 ; ... AND NUMBER OF COLUMNS.
TABLE BLOCK ROWS*COLS ; ALLOT SPACE FOR A 30-BYTE TABLE.

The svmbol ROWS is assigned the value 10 and the symbol COLS is assigned the value 3.
Note that the two 8080A MVI instructions may refer to ROWS and COLS, even though the
symbols are not defined until later in the module. On the other hand, the BLOCK directive
that refers to the symbols must follow the EQU directives that define the symbols.

REV A FEB 1981 ' 5-15

EX'TM Assembler Directives—8500 MDL A Series Assembler Users

Stops macro expansion

“

5-16

SYNTAX

Label Operation Operand
[symbol] EXITM

EXPLANATION

The EXITM directive terminates the current macro expansion; EXITM does not mark the end
of a macro definition.

EXITM is valid only in.macros. It is generally used to stop macro expansion in the middle of
an IF block or REPEAT block.

EXAMPLES
Label Operation Operand Comment
MACRO TESTBYTE
PARAM SET 1 ; POINT TO FIRST PARAMETER.
REPEAT PARAM <= '#' ; DO FOR EVERY PARAMETER:
IF 'PARAM' < O ; IF PARAMETER IS BAD...
WARNING ; NEGATIVE PARAMETER
EXITM 3 ... ABORT MACRO EXPANSION.
ELSE ; OTHERWISE STORE THE VALUE.
BYTE '"PARAM'
ENDIF
PARAM SET PARAM + 1 ; INCREMENT PARAMETER POINTER...
ENDR ;3 ... AND REPEAT.
ENDM

Macro TESTBYTE generates one BYTE directive for each parameter in the macro invocation.
The variable PARAM counts from 1 to the number of parameters passed (‘#'). The construct
'PARAM’ is replaced by the parameter pointed to by PARAM. If a negative parameter is
encountered, the WARNING and EXITM directives are assembled and macro expansion ends
before all parameters have been processed.

The macro invocation
TESTBYTE 10,20,-1,-2,30

yields the following macro expansion:
BYTE 10

BYTE 20
WARNING ; NEGATIVE PARAMETER

If the EXITM statement were omitted, macro expansion would continue until all parameters
were processed:

BYTE 10
BYTE 20
WARNING ; NEGATIVE PARAMETER
WARNING ; NEGATIVE PARAMETER
BYTE 30

REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users G LO BAL
Declares global symbol(s)
—

SYNTAX
Label Operation Operand
[symbol] GLOBAL global-sym[,global-sym)]...
PARAMETERS
global-sym A symbol to be declared global

EXPLANATION

The GLOBAL directive declares one or more symbols to be global. A global symbol defined in
one module may be referred to by other modules. Both the module that defines the symbol
and the module that refers to it must declare the symbol to be global. The linker will make
the value of the global symbol available to all modules that declare it.

The GLOBAL directive that declares a symbol must precede the statement that defines that
symbol. The symbol may not be defined more than once in any group of modules to be linked.

A global symbol that is given a value in the current module is called a bound global. A bound
global that is also an address is called an entry point, since it often represents an instruction
that is jumped to from outside the module.

A giobai symbol that is not defined in the current module is calied an unbound global; its
value must be provided at link time, either by another module or by the linker command
DEFINE.

A section name (defined by a COMMON, RESERVE, or SECTION directive) is a global symbol;
it should not be declared with a GLOBAL directive in the same module in which the section
is defined.

REV A FEB 1981 5-17

GLO BAL Assembler Directives—=8500 MDL A Series Assembler Users

Declares global symbol(s)

O KO

EXAMPLES
This example demonstrates the use of global symbols in three modules; MYMOD, HISMOD,
and HERMOD.
Label Operation Operand
NAME MYMOD
GLOBAL HIM,HER,VALUE
VALUE EQU 3
CALL HIM
CALL HER
CALL MYSELF

MYSELF XRA A

In module MYMOD, HIM and HER are unbound globals, but VALUE is a bound global, since it
is assigned a value by the EQU directive. MYSELF does not need to be declared global, since
it is defined in MYMOD (as the address of the 8080A XRA instruction) and is not used in any
other module.

NAME HISMOD
GLOBAL HIM,VALUE

HIM MVI A,VALUE

In module HISMOD, VALUE is an unbound global. HIM is defined as the address of the MVI
instruction, so HIM is an entry point {(a bound global address).

NAME HERMOD
GLOBAL HER,HIM

HER CALL HIM

In module HERMOD, HIM is an unbound global. HER is defined as the address of the CALL
instruction, so HER is an entry point.

In summary:
® HIM is defined in HISMOD and used in MYMOD and HERMOD;
® HER is defined in HERMOD and used in MYMOD;
® VALUE is defined in MYMOD and used in HISMOD.

Each symbol is declared to be global wherever it is defined or used. Since MYSELF is defined
in MYMOD and used only in MYMOD, it does not need to be declared global

5-18 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users IF
Begins conditional assembly block
—

SYNTAX
Label Operation Operand
[symbol] IF condition-value
PARAMETERS
condition-value Any expression that yields a numeric value. The condition is considered

faise if the vaiue is zero and true if the vaiue is nonzero.
EXPLANATION

The IF directive marks the beginning of an IF...ENDIF or IF...ELSE...ENDIF block of statements.
The value of the expression in the IF directive determines which statements (if any) in the
block are assembled.

IF...ENDIF

An IF...ENDIF block has the following structure:
IF condition-value

(statements to be assembled if condition-value is true)
ENDIF

If the condition-value is true (nonzero), the statements between the IF directive and the
ENDIF directive are assembled. If the condition-value is false (zero), those statements are
skipped. (See Example 1.)

IF...[ELSE...ENDIF

An IF...ELSE...ENDIF block has the following structure:
IF condition-value
(statements to be assembled if condition-value is true)
ELSE
(statements to be assembled if condition-value is false)
ENDIF

If the condition-value is true {nonzero), the statements between the IF directive and the ELSE
directive are assembled. Otherwise, the statements between the ELSE directive and the
ENDIF directive are assembled. (See Example 2.}

NOTE

A relational expression (for example, J < O} yieldz the value -1 {16 1-bits)
when true and the value O (16 O-bits) when false. Thus the bit manipulation
operators &, !, and !! may be used as the conjunctions AND, OR, and
exclusive-OR, respectively, in complex relational expressions. (See Example
3.) The Language Elements section of this manual explains expressions and
operators in detail.

REV A FEB 1981 5-19

IF Assembler Directives—8500 MDL A Series Assembler Users

Begins conditional assembly block
L~ T]

Each IF directive must have a corresponding ENDIF directive and may have one
corresponding ELSE directive.

An IF block may be nested inside a REPEAT block or another IF block. Blocks may be nested
as deep as available memory in the assembler permits. An IF block may not lie partially inside
and partially outside a REPEAT block, another IF block, a macro expansion, or statements
from an INCLUDE file. See Fig. 5-1, which illustrates the allowed forms of nesting for IF

5-20

blocks.
Allowed NOT Allowed
REPEAT IF REPEAT
— IF —— REPEAT ——IF
——ENDIF “—— ENDR ENDR
ENDR ELSE —— ENDIF
— IF
—— ENDIF
ENDIF
IE start of macro F
expansion 1
start of macro start of macro
[expansion IF expansion
end of macro
S expansion ENDIF ENDIF
end of macro end of macro
ENDIF ~ expansion expansion
IF start of IF
INCLUDE file
start of) IF start of
INCLUDE file INCLUDE file
end of
— INCLUDE file —— ENDIF ENDIF
d of end of
ENDIF INCLUDE file INCLUDE file
3575-7

Fig. 5-1. Allowed forms of IF block nesting.

An IF block may not lie partially inside and partially outside a REPEAT block, another IF block, a macro

expansion, or statements

from an INCLUDE file

REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users IF
Begins conditional assembly block
—

EXAMPLES

IF Example 1

In this example, a warning is displayed at assembly time if the object code for section ASEC
occupies more than one page of memory. The dollar sign represents the current value of the
location counter.

Label Operation Operand

PAGESIZE EQU 100H
SECTION ASEC, INPAGE
IF $ >= PAGESIZE
WARNING ; SECTION ASEC TOO LONG
ENDIF

iF Example 2
This example shows the use of an IF.._ELSE...ENDIF block in a macro.

Label Operation Operand Comment
MACRO WORDS
IF wrqrn o oun ; IF FIRST PARAMETER IS ABSENT...
WORD 0 5 ... STORE A WORD OF ZEROS.
ELSE
WORD e ; OTHERWISE STORE FIRST PARAMETER.
ENDIF
ENDM
The construct "1’ is replaced by the first parameter. If there is no first parameter, "1’ is
replaced with the null string (nothing); since the expression ”” = "" is true, the statement

WORD 0 is assembled and the statement WORD 1’ is skipped. On the other hand, if the
parameter exists, the second WORD directive is assembled, taking the parameter as its

operand.
IF Example 3
Label Operation Operand
IF M>N & N<P & P=Q
WARNING ; TROUBLE
ENDIF

In this example, the conditional expression of the IF statement contains three relational
subexpressions: "M>N", "N<P", and "P=Q". Each subexpression yields the value -1 (truej or
0 (false). The three subexpression values are ANDed together to yield the value (-1 or 0) to be
used by the IF directive. (& is the logical AND operator.) Thus the WARNING directive is
assembled only if:

® M is greater than N, and
o N is less than P, and
e P is equal to Q.

REV A FEB 1981 5-21

lN C LU D E Assembler Directives—8500 MDL A Series Assembler Users

Assembies source code from another file

L R,

SYNTAX
Label Operation Operand
[symbol] INCLUDE filespec-string
PARAMETERS
filespec-string An expression that yields a string representing a filespec.

EXPLANATION

The INCLUDE directive causes the assembler to process the statements in the specified file
as if they were part of the current source file.

The INCLUDE file may not contain an INCLUDE directive.

If the INCLUDE directive is contained in a macro, the file is included at macro expansion time.
However, statements in the INCLUDE file cannot use the special text substitution constructs
usually allowed in macros ('N’ for the Nth parameter, '#’ for the number of parameters, ‘@'
for a unique label). See the Macros section for information about these constructs.

EXAMPLES
Label Operation Operand Comment
NAME MAINMOD
INCLUDE "MACR.ASM" ; DEFINE STANDARD MACROS.
INCLUDE "/SYS/COM.ASM" ; DEFINE COMMON BLOCK.

In this example, the statements in file MACR.ASM in the current directory (/USR) and file
COM.ASM in the system directory are assembled at the beginning of module MAINMOD.
MACR.ASM contains macro definition blocks; COM.ASM defines a common section.

5.22 REV A FER 1981

Assembler Directives—8500 MDL A Series Assembler Users L|ST

Turns on listing options

SYNTAX
Label Operation Operand
[symbol] LIST [listing-option[,listing-option]...]
PARAMETERS
listing-option One of the following listing options:

CND—Lists statements that are not assembled because of unsatisfied
IF or REPEAT conditions. Defaults to OFF: only those statements that are
actually assembled are listed.

CON—Lists assembly errors on the system terminal as well as in the
source listing. Defaults to ON.

DBG—Causes the linker listing to include an internal symbols list for
this module at link time. Defaults to OFF.

ME—Sets the ME/MEG option to the ME setting: lists all macro
expansion statements that are assembled. The ME/MEG option defaults
to MEG.

MEG—Sets the ME/MEG option to its default setting, MEG: lists only
those macro expansion statements that generate object code.

SYM—Lists the symbol table. Defaults to ON.
TRIVi—Trims the assembier iisting to 72 characters. The iisting width
defaults to 72 characters wide if the listing device is CONO; otherwise

the width defaults to 132 characters.

If no option is specified, the source listing is turned ON.

EXPLANATION

The LIST directive turns on the listing option(s) named in the operand field. If no option is
named, the master option (which controls the source listing) is turned on. The NOLIST
directive may be used to turn any of these options off.

Each option controls a different listing feature and may be turned on or off anywhere in the

source moduie. if an option is changed during a macro expansion, its previous setting 1s
restored when the expansion ends.

REV A FEB 1981 5.23

L|ST Assembler Directives—8500 MDL A Series Assembler Users

Turns on listing options
e]

An assembler listing contains two parts: the source listing, which shows the source code
and object code for each statement assembled; and the symbol table, which lists the
symbols used in the source module. The master option, CND option, and ME/MEG option
determine which lines of code appear in the source listing, and are discussed in the following
paragraphs. The SYM option controls display of the symbol table, and is discussed with the
CON, DBG, and TRM options under the heading Other Options.

Source Listing

Master Option. The master option is normally ON. The directive NOLIST (without operands)
turns the master option OFF, suppressing display of all statements except erroneous ones.
When the master option is OFF, PAGE and SPACE directives are suppressed and the CND
and ME/MEG options are overridden. The directive LIST (without operands) turns the master
option back ON.

CND. Normally the CND option is OFF, and any statement that is not assembled because of
an unsatisfied IF or REPEAT condition is not listed. When the CND option is ON, even
unassembled statements are listed.

ME/MEG. The ME/MEG option controls the display of statements in macro expansions. It
has three settings: ME, MEG, and OFF. At the default setting, MEG, only those statements
that generate object code (assembly language instructions and ASCII, BLOCK, BYTE, and
WORD directives) are listed. Note that other directives that directly affect the object module
(COMMON, EQU, GLOBAL, NAME, ORG, RESERVE, RESUME, SECTION) are not listed.

The directive LIST ME changes the ME/MEG setting to ME, causing every assembled
statement in a macro expansion to be listed. The directive NOLIST ME or NOLIST MEG turns
the ME/MEG option OFF, suppressing display of all macro expansion statements except
erroneous ones. The directive LIST MEG returns the ME/MEG option to its default setting.

Summary. The foiiowing tabie shows how the master option and CND option controi the
display of statements outside macro expansions.

Option Settings
Master CND Type of Statements Listed
OFF a errors
ON OFF assembled statements (default)
ON ON all statements

2don‘t care

5-24 REV A FEB 1981

Assembier Directives—8500 MDL A Series Assembler Users LIST

Turns on listing options

L -~]

The following table shows how the master option, ME/MEG option, and CND option control
the display of statements in a macro expansion.

Option Settings
Master ME/MEG | CND Type of Statements Listed
OFF @ a errors
ON OFF a errors
ON MEG a statements that generate object code (default)
ON ME OFF assembled statements
ON ME ON all statements

®don’t care

Other Options

CON. Normally the CON option is ON, and every erronecus statement and its accompanying
error message are displayed on the system terminal (CONO) as well as in the source listing.
When the CON option is OFF, erroneous statements and their error messages appear only in
the source listing.

DBG. If the DBG option is left at its default setting (OFF), the linker listing will contain no
internal symbols list for the current module when the module is linked. If the DBG option is
ON when assembly ends, an internal symbols list will be created, and it will list all symbols
in the module. The internal symbols list is described in the Linker section of this manual.

SYM. If the SYM option is left at its default setting (ON), the assembler listing will contain
the symbol tabie as well as the source listing. If the SYM option is OFF when assembly ends,
no symbol table is listed. The symbol table is described in the Assembler Introduction section.

TRM. Normally, the TRM option is OFF, and the assembler listing contains lines of up to 132
characters. When the TRM option is ON, all lines are truncated to 72 characters. (Source
lines that contain more than about 50 characters are truncated, since the source listing
displays 20 to 25 characters of information—depending on your microprocessor—to the left
of each source line.) If TRM is ON when assembly ends, the symbol table is rearranged to fit
a 72-character format.

When the listing device is the system termina! {CONO), the TRM option is automatically
turned ON before assembly starts. The directive NOLIST TRM restores the 132-character
format.

REV A FEB 1981 5-25

LIST

Assembler Directives—8500 MDL A Series Assembler Users
Turns on listing options

EXAMPLES

Label Operation Operand
LIST DBG
This statement causes the linker to display an internal symbols list for this module when it is
linked.

LIST CND,ME

This directive causes all statements (assembled and unassembled, mainline statements and
macro expansion statements) to appear in the source listing.

NOLIST
LIST
The NOLIST directive turns off the source listing and the LIST directive turns it back on.

While the source listing is suppressed, the settings of other options may be changed;
however, changes to the CND and ME,/MEG options do not become apparent until the listing
is turned back on.

NOLIST SYM
This statement suppresses display of the symbol table.

5-26 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users MACRO

Begins macro definition
o]

SYNTAX
Label Operation Operand
[symbol] MACRO macro-name
PARAMETERS
macro-name The name of the macro being defined.
EXPLANATION

The MACRO directive marks the beginning of a macro definition block. The macro consists of
all statements between, but not including, the MACRO directive and the next ENDM
directive.

The Macros section of this manual describes macros in detail.

EXAMPLES

The following macro converts the number in the specified 8080A register to its two’'s
complement:

Label Operation Operand Comment
MACRO NEGATE
SUB A ; SET A TO ZERO.

SUB ' ; SUBTRACT '1' FROM ZERO.
MOV '1',A ; STORE RESULT BACK INTO '1'.
ENDM

The macro invocation

NEGATE B
yields the following macro expansion:
SUB A : SET A TO ZERO.
SUB B ; SUBTRACT B FROM ZERO.
MOV B,A ; STORE RESULT BACK INTO B.

Every occurrence of the first formal parameter (‘1) is replaced by the first actual parameter
(B). The 8080A instruction SUB A clears the A register; SUB B subtracts the contents of the
B register from the A register; MOV B,A moves the result back into the B register.

REV A FEB 1981 5.27

NAME Assembler Directives—8500 MDL A Series Assembler Users

Declares object module name

—

SYNTAX
Label Operation Operand
[symbol] NAME module-name
PARAMETERS
module-name A name for the object module being created: any symbol.

EXPLANATION

The NAME directive gives a name to the object module created by this assembly. If more than
one NAME directive appears in a module, only the first name specified is used. If the source
module contains no NAME directive, the default name *NONAME* is assigned to the object
module.

The library generator (LibGen) requires that each module in a library file have a unique
name.

EXAMPLES

Label Operation Operand
NAME SUBSMOD

This statement assigns the name SUBSMOD to the object module being created.

5-28 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users N 0 UST

Turns off listing o.t:ons

—

[symbol] NOLIST

Label Operation Operand

SYNTAX

[listing-option[listing-option]...]

listing-option

PARAMETERS

One of the following listing options:

CND—Suppresses listing of statements that are not assembled because
of unsatisfied IF or REPEAT conditions.

CON—Suppresses display of assembly errors on the system terminal.
DBG—Suppresses the internal symbois list for this module at link time.
ME—Suppresses display of ail macro expansion statements.
MEG—Suppresses display of all macro expansion statements.
SYM—Suppresses listing of the symbol table.

TRM—Changes the listing width from 72 characters to 132 characters.

If no option is specified, the source listing is turned off.

EXPLANATION

The NOLIST directive turns off the listing option(s) named in the operand field. These options
are explained in detail under the LIST directive.

REV A FEB 1981

5-29

ORG Assembler Directives—8500 MDL A Series Assembler Users

Sets location counter

L .~

SYNTAX
Label Operation Operand
address
[symbol] ORG /address-mod
PARAMETERS
symbol A user-defined label (usually omitted) that is assigned the value of the

updated location counter.

address A new value for the location counter: any expression that yields an
address. Each symbol in the expression must have been defined
previously.

address-mod Any numeric expression. The location counter is advanced to the next

address that is a multiple of the address-mod. Each symbol in the
expression must have been defined previously.

EXPLANATION

The ORG directive sets the location counter to the specified address.

If the / (slash) operator is used, the location counter is set to the next address that is a
multiple of the address-mod. If the current value of the location counter is already a multiple
of the address-mod, the location counter is unaffected. If the address-mod is zero and the
value in the location counter is even, the location counter is set to the next odd value.

The location counter is an internal counter maintained by the assembler that holds the
address, relative to the beginning of the current section, of the next byte of code to be
assembled. The location counter starts at zero for each section and is automatically updated
as object code is generated.

The ORG directive is generally used to initialize the program counter for an absolute section,
or to begin the next block of object code on a new page of memory. Avoid using ORG in a
byte-relocatable or inpage-relocatable section, since the conditions you use ORG to create
are likely to be lost when the section is relocated.

If, through use of the ORG directive, you break your section into noncontiguous blocks of
code, the linker may place other sections in the gaps between these blocks. (See Example 1.)
Every byte in a section retains its position relative to the beginning of the section even if the
section is relocated.

If you use ORG incorrectly, you may end up specifying more than one value for the same byte
of object code. (See Example 2.) Such a situation is not detected by the assembler, linker, or
LOAD command.

5-30 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users ORG

Sets location counter

—

EXAMPLES

ORG Example 1
Label Operation Operand Comment
; DEFINE SECTION ABS (AN ABSOLUTE SECTION).

SECTION ABS,ABSOLUTE
ORG 100H ; START ON PAGE 1.

ABS1 BLOCK 80H ; 128 BYTES OF MEMORY

ORG /100H : GO TO BEGINNING OF NEXT PAGE.
ABS2 BLOCK 40H ; 64 BYTES

ORG 400H ; GO TO PAGE 4.
ABS3 BLOCK 80H ; 128 BYTES

; DEFINE SECTION REL (A BYTE-RELOCATABLE SECTION).
SECTION REL

REL1 BLOCK 40H ; 64 BYTES
ORG /100H ; GO TO BEGINNING OF NEXT PAGE (?)
REL2 BLOCK 80H ; 128 BYTES

In the example above, two sections of object code are generated. Section ABS is divided into
three blocks and section REL is divided into two blocks. The layout of the two sections is
shown below.

ABS REL
0000 0000
REL1
0100 0100
ABS1 REL2
0200
ABS2
0300
0400
ABS3
3575-8

REV A FEB 1981 5-31

ORG Assembler Directives—8500 MDL A Series Assembler Users

Sets location counter

...

The linker will arrange the two sections as shown below.

0000
0100
ABS1
0200
ABS2
REL1 \
0300 > Section REL is relocated as a whole
to the first gap of sufficient size.
REL2
4
0400
ABS3
3575-9

Notice that section REL is placed between blocks ABS2 and ABS3 of section ABS. Notice also
that block REL2 began on a page boundary before it was relocated, but not after.

ORG Example 2

Label Operation Operand
ORG 400H
ASCII "A LINE OF TEXT"
ORG 405H
ASCII NEXRREN
yields the same object code as:
ORG 400H
ASCII "A LIN#**¥%TEyTn

5-32 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users PAG E

Skips to new page in listing

SYNTAX

Label Operation Operand
[symbol] PAGE

EXPLANATION

~A -

A PAGE directive causes the next source line listed to appear at the top of a new page. The
PAGE directive itself is not listed.

If the source listing is suppressed by a NOLIST directive, the PAGE directive has no effect.

EXAMPLES

Label Operation Operand Comment

TITLE "THIS IS THE TITLE"
PAGE
SECTION MAIN

; SKIP TO A NEW PAGE TO
; BEGIN CODE FOR MAIN.

These statements cause the source code for section MAIN to begin on a new page. The top of
the new page looks like this:

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE Page X

XXXXX SECTION MAIN ; BEGIN CODE FOR MAIN.

REV A FEB 1981 5-33

R EPEAT Assembler Directives—8500 MDL A Series Assembler Users

Begins repetitive assembly

SYNTAX
Label Operation Operand
[symbol] REPEAT condition-valuel,limit]
PARAMETERS
condition-value Any expression that yields a numeric value. The condition is considered

false if the value is zero and true if the value is nonzero.

limit The maximum number of times the block may repeat: any non-negative
scalar expression. Defaults to 255.

EXPLANATION

The statements between a REPEAT directive and its matching ENDR directive are assembled
repeatedly until the condition-value becomes false (zero). A REPEAT...ENDR block is valid
only within a macro.

If the condition-value is still true (nonzero) after the repetition limit has been reached, the
assembler responds

#%%%% FRROR 017: Iteration limit exceeded
and skips to the statement following the ENDR directive.

If the condition-value is false before the first repetition, the REPEAT...ENDR block is not
assembled at all

The condition-value may be a relational expression {for example, J < 0). See the IF directive
for a note on the relationship between numeric and relational expressions.

A REPEAT block may be nested inside an IF block or another REPEAT block. Blocks may be
nested as deep as available memory in the assembler permits. A REPEAT block may not lie
partially inside and partially outside an IF block, another REPEAT block, a macro expansion,
or statements from an INCLUDE file. See Fig. 5-2, which illustrates the allowed forms of
nesting for REPEAT blocks.

5-34 REV A FEB 1981

Assembler Directives—8500 MDL. A Series Assembler Users

REPEAT

Begins repetitive assembly

e =

Allowed NOT Allowed
REPEAT IF REPEAT
— IF —— REPEAT —— IF
L—ENDIF — ENDR ENDR
—— REPEAT ENDIF ——ENDIF
L—— ENDR
ENDR
start of macro start of macro
expansion expansion REPEAT
start of
REPEAT REPEAT [expansit::acro
L ENDR another ENDR
‘ macro
end of macro expansion L end of macro
expansion expansion
ENDR
end of macro
expansion
T
REPEAT ——— St o E file REPEAT
startof | oo aa start of
™ INCLUDE file REFEAI [INCLUDE file
end of
INCLUDE file - ENDR ENDR
end of end of
ENDR INCLUDE file — INCLUDE file

3575-10

REV A FEB 1981

Fig. 5-2. Allowed forms of REPEAT block nesting.

A REPEAT block may not lie partially inside and partially outside an IF block, another REPEAT block, a
macro expansion, or statements from an INCLUDE file.

5-35

R EPEAT Assembler Directives—8500 MDL A Series Assembler Users

Begins repetitive assembly
L

EXAMPLES

Label Operation Operand

MACRO LOOP
COUNT SET 1

REPEAT COUNT <= '1!

BYTE 2!
COUNT SET COUNT + 1

ENDR

ENDM

The statement
LOOP 3,0

invokes the above macro and produces the following expansion:

COUNT SET 1
REPEAT COUNT <= 3
BYTE 0

COUNT SET COUNT + 1 (COUNT is incremented to 2.)
ENDR
REPEAT COUNT <= 3
BYTE 0

COUNT SET COUNT + 1 (COUNT is incremented to 3.)
ENDR
REPEAT COUNT <= 3
BYTE 0

COUNT SET COUNT + 1 (COUNT is incremented to 4.)
ENDR

This sequence generates three bytes of zeros. Note that with the listing options at their
default settings, only the BYTE directives would appear in the listing:

BYTE 0
BYTE 0
BYTE 0

5-36 REV A FEB 1981

Assembier Directives—8500 MDL A Series Assembler Users RESERVE

Reserves section of memory

SYNTAX
Label Operation Operand
[symbol] RESERVE section-name, section-length[,relocation-type]
PARAMETERS
symbol A user-defined labei (usually omitted) that represents the first byte of

the relocated reserve section.

section-name The name assigned to the section.
section-length The number of bytes in the section: any non-negative scalar expression.
relocation-type An option to direct the relocation of the section at link time. You may

specify one of the following relocation types:

PAGE—The section is relocated to the beginning of a page of memory.
See the Assembler Specifics section of this manual for the page size for
your microprocessor.

INPAGE—The section may be relocated to any address, so long as the
entire section lies within one page of memory.

If you do not specify PAGE or INPAGE, the relocation type defaults to
byte-relocatable: the relocated section may begin at any byte in
memory.

EXPLANATION

The RESERVE directive creates a section with the specified name, length, and relocation
type. Different modules may allocate space for the same reserve section; the linker
concatenates all reserve sections with the same name into a singie section.

Since you can specify the length, but not the contents, of a reserve section, RESERVE is used
chiefly to set aside memory for a workspace or stack.

A reserve section may not have the relocation type ABSOLUTE; however, you may use the
linker command LOCATE to place the section at the desired position in memory. See the
Linker section of this manual.

The RESERVE directive has no effect on the section currently being defined.

The relocation type of a reserve section must be the same everywhere the section is
declared. A section must not be declared more than once in the same module.

The name of a section is a global symbol whose value is the address of the first byte of the

section. A section name should not be declared with a GLOBAL directive in any module in
which the section is defined with a RESERVE directive.

REV A FEB 1981 5-37

R ES ERVE Assembler Directives—8500 MDL A Series Assembler Users

Reserves section of memory

Y

5-38

EXAMPLES

Label Operation Operand Comment

NAME MOD1
SECTION SEC1

; BEGIN DEFINITION OF SEC1.

RESERVE STACK, 40 ; SET ASIDE 40 BYTES FOR STACK.
. ; RESUME DEFINITION OF SEC1.

.

In the above example, 40 bytes are allocated to a byte-relocatable reserve section called
STACK. The statements on either side of the RESERVE directive refer to section SEC1.

NAME MOD2

.

RE‘ISERVE STACK, 20 ; SET ASIDE 20 BYTES FOR STACK.

When moduies MOD1 and MOD2 are linked, reserve section STACK will occupy 60 bytes of
memory: 40 bytes from MOD1 and 20 bytes from MOD2.

REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users R ESU ME

Resumes definition of section

e - -

SYNTAX
Label Operation Operand
[symbol] RESUME [section-name]
PARAMETERS
symbol A user-defined label (usually omitted) that is assigned the current value

of the location counter of the resumed section.

section-name The name of the section to be resumed. If no name is given, the default
section is resumed.

EXPLANATION
The RESUME directive stops definition of the current section and resumes the definition of
the specified section.

If no section name is given, the definition of the default section is continued. The default
section is described under the SECTION directive.

Once a section is defined, it may be resumed any number of times.

EXAMPLES

Label Operation Operand Comment
SECTION MAINPROG ; BEGIN DEFINITION OF MAINPROG.
STA TEMP ; USE A TEMPORARY LOCATION.
SECTION RAM ; SWITCH TO RAM ...
H
H

TEMP BLOCK 1 ... TO ALLOT SPACE FOR TEMP.
RESUME MAINPROG GO BACK TO ORIGINAL SECTION.

in this example, the definition of section MAINPROG is interrupted to reserve one byte for
temporary storage. The RESUME directive continues the definition of section MAINPROG.

REV A FEB 1981 5-39

SECT' ON Assembler Directives—8500 MDL A Series Assembler Users

Declares program section

s S

SYNTAX
Label Operation Operand
[symbol] SECTION section-namel[,relocation-type]
PARAMETERS
symbol A user-defined label (usually omitted) that represents the address of the

first byte of the section.
section-name The name assigned to the section.

relocation-type An option to direct the relocation of the section at link time. You may
specify one of the following relocation types:

PAGE-—The section is relocated to the beginning of a page of memory.
See the Assembler Specifics section of this manual for the page size for
your Mmicroprocessor.

INPAGE—The section may be relocated to any address, so long as the
entire section lies within one page of memory.

ABSOLUTE—The section is not relocated.

If you do not specify PAGE, INPAGE, or ABSOLUTE, the relocation type
defaults to byte-relocatable: the relocated section may begin at any byte
in memory.

EXPLANATION

The SECTION directive declares a section of type SECTION and defines the name and
relocation type of the section. The contents of the section are defined by the statements
following the SECTION directive, up to the next SECTION, COMMON, or RESUME directive.

Any section that contains instructions (as opposed to data) should be of type SECTION.

NOTE

In this discussion, the word "SECTION” (all uppercase) refers to a section
declared with a SECTION directive, rather than with a COMMON or RESERVE
directive.

5.40 REV A FEB 1981

Assembiler Directives—8500 MDL A Series Assembler Users S ECTI ON
Declares program section
_

Unlike a common or reserve section, a SECTION must be defined entirely in one module. Use
the RESUME directive to add code to a section that has already been defined in the current
module. If the linker encounters more than one SECTION with the same name, the linker
issues an error message and links only the first SECTION with that name.

The name of a section is a global symbol whose value is the address of the first byte of the
section. A section name should not be declared with a GLOBAL directive in the same module
in which the section is defined with a SECTION directive.

The default section of a module contains all object code generated before the first SECTION
or COMMON directive is assembled. The default section is a byte-relocatable SECTION; its
name is derived as follows:

1. Take the first seven characters of the name of the object file.
2. Eliminate all characters except letters and digits.
3. Add the prefix "%".

For example, the defauit section for object file MY.OBJ is %MYOB.J. When no object file is
generated, the default section is called %.

EXAMPLES
Label Operation Operand
SECTION MAINPROG
{source code for section MAINPROG)
SECTION TABLE, INPAGE

{source code for section TABLE)

SECTION INTERRUP,ABSOLUTE
ORG 100H
{source code for section iNTERRUP)

In this example, section MAINPROG may be relocated by the linker to any address. TABLE is
relocatable to any address, so long as the entire section lies within one page of memory.
INTERRUP, which is not relocatable, begins at address 100H.

REV A FEB 1981 5-41

SET Assembler Directives—8500 MDL A Series Assembler Users

Assigns vaiue to variable

SYNTAX
Label Operation Operand
string-variable SET string-expression
or
numeric-variable SET numeric-expression
PARAMETERS
string-variable A user-defined label for a string variable.
numeric-variable A user-defined label for a numeric variable.
string-expression Any expression that yields a character string.

numeric-expression Any expression that yields a numeric value.

EXPLANATION

The SET directive assigns a value to a symbol. The symbol is called a variable because it may
be assigned a new value with a subsequent SET directive. A variable may be used anywhere
the value it represents is permitted.

A variable must not be a global symbol. SET may not redefine a symbol unless that symbol
was originally defined with a SET directive.

There are two types of variables: string and numeric.

® A string variable represents a character string. A string variable must be declared with
a STRING directive before it may be assigned a value.

® A numeric variable represents a scalar or address. A numeric variable need not be
declared; it becomes defined the first time a SET directive assigns it a value.

If the type of the variable does not match the type of the value assigned to it, the value is
converted to match the type of the variable.

® if you assign a string value to a numeric variable, the variable takes the 16-bit value
formed by the first two bytes of the string. If the string exceeds two characters, the
assembler responds

*%%%% FRROR 085: String value too large

If the string contains only one character, its ASCIl code is copied to the low-order byte
of the variable and the high-order byte is set to zero.

® |f you assign a numeric value to a string variable, the STRING function is automatically
invoked to convert the number to a six-digit string.

5-42 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users S ET
Assigns value to variable

e —

Text substitution (signaled by single quotes ' ') often involves variables. A string variable in
single quotes (e.g., 'STVAR’) is replaced by the string the variable represents. The substituted
string is not enclosed in quotes. A numeric variable in quotes {e.g., 'N’) is legal only in
macros, and is replaced by the Nth parameter in the macro invocation.

EXAMPLES

Label Operation Operand Comment

MACRO BYTES
N SET 1 ; SET POINTER TO FIRST PARAMETER.

REPEAT N &= '"# ; REPEAT FOR EACH PARAMETER:

BYTE 'NT,='N" ; ALLOCATE TWO BYTES FOR THE NTH PARAM.
N SET N+1 ; INCREMENT PARAMETER POINTER.

ENDR

ENDM

In this example, N is a numeric variable that counts from 1 to the number of parameters in
the macro invocation {'#’). The construct ‘N’ is replaced by the Nth parameter. The invocation

BYTES 10,20,MAX
yields the macro expansion
BYTE 10,-10 ; ALLOCATE TWO BYTES FOR THE NTH PARAM.
BYTE 20,-20 ; ALLOCATE TWO BYTES FOR THE NTH PARAM.
BYTE MAX,-MAX ; ALLOCATE TWO BYTES FOR THE NTH PARAM.

In the example below, string variables VOL and FILE are assigned values and then
concatenated to form the filespec of an INCLUDE file.

Label Operation Operand
STRING VOL(8),FILE(8)
VOL SET "/Syst

FILE SET "INC.ASM"

INCLUDE voL:"/":FILE

The statements from file INC.ASM in the system directory are assembled following the
INCLUDE directive.

REV A FEB 1981 5-43

S ET Assembler Directives—8500 MDL A Series Assembler Users

Assigns value to variable

L e

In the following example, the name of the current section ('%') is stored in string variable
SECNAME and is later substituted into the RESUME directive.

Label Operation Operand

STRING SECNAME(S)
SECTION MAINPROG
SECNAME SET migin

RESUME 'SECNAME'

The above lines are assembled as follows:

STRING SECNAME (8)
SECTION MAINPROG

SECNAME SI:ZT "MAINPROG"

RESUME MAINPROG

544 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users S PACE

Inserts biank lines into listing

—

SYNTAX
Label Operation Operand
[symbol] SPACE [line-count]
PARAMETERS
line-count The number of blank lines to be generated: any expression that yields a

scalar in the range O to 255. Defaults to 1.

EXPLANATION

The SPACE directive generates the specified number of blank lines in the source listing. If no
line count is given, one line is generated. The SPACE directive itseif is not listed.

If the line count exceeds the number of lines left on the current page, the SPACE directive
merely skips to the top of the next page.

If the source listing is suppressed by a NOLIST directive, the SPACE directive has no effect.

EXAMPLES

Label Operation Operand

; END OF SECTION AAAA.
SPACE 5
SECTION BBBB
; BEGIN SECTION BBBB.

These lines of code will be listed as follows:

; END OF SECTION AAAA.

5 blank lines

SECTION BBBB
; BEGIN SECTION BBBB.

REV A FEB 1981 5-45

STITLE Assembler Directives—8500 MDL A Series Assembler Users

Creates listing subtitle

S T RS

SYNTAX
Label Operation Operand
[symbol] STITLE subtitle-string
PARAMETERS
subtitle-string The subtitle for the source listing: any expression that yields a string of

up to 72 characters.

EXPLANATION

The STITLE directive creates a subtitle of up to 72 characters. The subtitle is printed below
the title line at the top of each page of the source listing. The STITLE directive itself is not
listed.

Each subsequent STITLE directive redefines the subtitle. If the STITLE directive precedes the
first source line listed on the current page, the new subtitle appears on the current page;
otherwise it first appears on the next page. Thus, if a STITLE directive immediately precedes
or follows a PAGE directive, the designated subtitle appears at the top of the new page.
If the subtitle string exceeds 72 characters, only the first 72 are used.

The STITLE directive is used for program documentation only. You may choose to change the
subtitle to reflect each new section of code.

5-46 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users ST'TLE
Creates listing subtitle
L. -]

EXAMPLES
Label Operation Operand " Comment
TITLE "THIS IS THE TITLE"

STITLE "SUBTITLE FOR PAGES 1 AND 2"

; THIS IS THE FIRST LISTABLE LINE.

.

PAGE ; SKIP TO PAGE 2.
PAGE ; SKIP TO PAGE 3.
STITLE "SUBTITLE FOR PAGE 3"

The above statements produce the following page headings in the source listing:

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE Page 1
SUBTITLE FOR PAGES 1 AND 2

00003 ; THIS IS THE FIRST LISTABLE LINE.

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE Page 2

SUBTITLE FOR PAGES 1 AND 2

Tektronix xxxxxxxxx ASM Vx.x THIS IS THE TITLE Page 3
SUBTITLE FOR PAGE 3

REV A FEB 1981 5-47

STR 1 NG Assembler Directives—8500 MDL A Series Assembler Users

Deciares string variable(s})
L ____________________________________ -~~~ = -~ "=]

SYNTAX
Label Operation Operand
[symbol] STRING string-variable[(length)][,string-variable[(length)]]...
PARAMETERS
string-variable A symbol to be used as a string variable.
length The length of the longest string that may be assigned to string-variable:

any expression that yields a positive scalar value. Defaults to 8.

EXPLANATION

The STRING directive declares each symbol in the operand field to be a string variable. Each
symbol may be followed by a non-negative value indicating the length of the longest string
that may be assigned to that variable. If a maximum length is not specified, it defaults to
eight characters.

A symbol must be declared with a STRING directive before it can be used as a string variable.
When a string variable is declared, its value is the null string (zero characters). Use the SET
directive to assign a value to a variable.

EXAMPLES
Label Operation Operand
STRING CITY(10),STATE,HOMETOWN (20)
CITY SET "BEAVERTON"
STATE sé'r "OREGON"
HOMETOWN SET CITY:", ":STATE

In this example, the STRING directive declares CITY, STATE, and HOMETOWN as string
variables with maximum lengths of 10, 8, and 20, respectively. Subsequently, CITY is
assigned a 9-character string ("BEAVERTON"), STATE is assigned a 6-character string
("OREGON"), and HOMETOWN is assigned a 17-character string {"BEAVERTON, OREGON").

5-48 REV A FEB 1981

Assembler Directives—8500 MDL A Series Assembler Users TlTLE

Creates listing title
L |

SYNTAX
Label Operation Operand
[symbol] TITLE title-string
PARAMETERS
title-string The title for the source listing: any expression that yields a string of up
to 30 characters.

EXPLANATION

The TITLE directive creates a title of up to 30 characters to be printed at the top of each page
of the source listing. The TITLE directive itself is not listed.

Each subsequent TITLE directive redefines the title. If the TITLE directive precedes the first
source line listed on the current page, the new title appears on the current page; otherwise it
first appears on the next page. Thus, if the TITLE directive immediately precedes or follows a
PAGE directive, the new title appears at the top of the new page.

if the title string exceeds 30 characters, only the first 30 are used.

The TITLE directive is used for program documentation only. You may choose to use the
same title throughout the module, or you may change the title or subtitle as often as you

want.
EXAMPLES
Label Operation Operand Comment
TITLE "THE SAME OLD TITLE"
STITLE "THE SAME OLD SUBTITLE"
PAGE ; SKIP TO PAGE 2.
PAGE : SKIP TO PAGE 3.
TITLE "A NEW TITLE"

The above statements produce the following page headings in the source listing:

Tektronix xxxxxxxxx ASM Vx.x THE SAME OLD TITLE Page 1
THE SAME OLD SUBTITLE

Tektronix xxxxxxxxx ASM Vx.x THE SAME OLD TITLE Page 2
THE SAME OLD SUBTITLE

Tektronix xxxxxxxxx ASM Vx.x A NEW TITLE Page 3
THE SAME OLD SUBTITLE

REV A FEB 1981 549

WAR N | NG Assembler Directives—8500 MDL A Series Assembler Users

Displays warning

SYNTAX
Label Operation Operand
[symbol] WARNING [;:message]
PARAMETERS
message Any user-defined error message.

EXPLANATION

When a WARNING directive is assembled, it is treated as an erroneous statement: the
WARNING line and the message

%¥%%%% ERROR 001:

are displayed on the system terminal and in the source listing.

You may use the WARNING directive to detect unexpected conditions in your program.

EXAMPLES

Label Operation Operand

PAGESIZE SET 100H
SECTION SEC1,INPAGE

IF $ >= PAGESIZE
WARNING ; SECTION '%' TOO LONG
ENDIF

In this example, section SEC1 must not exceed one page in length. If the location counter ($)
has exceeded its maximum when the IF directive is assembled, the WARNING is assembled
and the following message is displayed:

XXXXX WARNING ; SECTION SEC!1 TOO LONG
k%%%% FRROR 001:

The construct ‘%’ is repiaced by the name of the current section.

5-50 REV A FEB 1981

Assembiler Directives—8500 MDL A Series Assembler Users WORD
Generates word(s) of data
—

SYNTAX
Label Operation Operand
[symbol] WORD word-value[,word-value}...
PARAMETERS
symbo! A user-defined label that represents the address of the first byte of data.
word-value Any expression that yields a number in the range -32768 to 65535.

EXPLANATION

The WORD directive stores the specified values in consecutive words of the object program.
Each word consists of two bytes. The low-order byte of the word may precede or follow the
high-order byte, depending on the convention for your microprocessor.

Each value may be a scalar in the range -32768 to +32767 or an address in the range O to
65535. Any value outside the range -32768 to 65535 is truncated to 16 bits without notice.

EXAMPLES
Label Operation Operand
YEARS WORD 1775,1812,1861
POINTER WORD TABLE
TABLE BLOCK 12

In this example, the first statement stores three two-byte numbers: 1775, 1812, and 1861.
YEARS is the address of the first byte of 1775.

The second statement stores the address of a 12-byte table. POINTER is the address of the

address stored. A microprocessor with indirect addressing can refer to the table by its
address (TABLE) or by its indirect address (POINTER).

REV A FEB 1981 5-51

8500 MDL A Series Assembler Users

—

Section 6

MACROS
Page
INErOAUCHION .ttt ettt it e et e e 6-1
Macro EXpansion ProCessoiuiuiiiiiiiiiiiiiiiiiiineenannaenns 6-2
Macro Definitionot i it e e et 6-3
The Macio DiTBCHIVE ottt it i i i it i ittt ettt e e ta e ea e aananans 6-3
The Macro Body e et e e ettt 6-3
Macro Body Operatorsoueutnn ittt ittt iiiiian e iiinaeaanans 6-3
Parameter ACCESSoviirinirrneeennnenns P 6-4
Unique Label Generation (the @ Character) 6-4
Determining Parameter Count (the # Character)................ooviiiiiiinn.. 6-4
Determining Current Section Name (the % Character) 6-5
Disabling Special Character Significance {the A Character) 6-5
The ENDM Dir€CTIVE v vvt ettt ettt et et ettt e e ettt e eee et iaae e 6-6
Macro INVOCAtIONottt ettt et ittt et e e e 6-6
PN S« ottt ettt ettt et e et 6-6
Macro Parameter CONVENTIONS . .ottt e e ce e ie e et e et rae e eaneaeeneennanennens 6-6
The Square BrackelSueioinnt ettt et nnns 6-6
Double QUOtE CharaClerS ..ottt it iet i ittt et tee e eneeneeneaeeneeaaaaenas 6-7
NU ParamMEIEIS ot ittt ittt e et ittt ettt et e e et 6-8
The Up-arrow Character in Macro Invocations..............oiiiiiiiiiiiinnn.. 6-8
Macro ExXamplest e 6-9
Example 1: Simple Macro Invocation i i 6-9
Example 2: Nested Macro Invocations i 6-9
Example 3: Conditional Macro Expansion iiiiiiiiiiiinennennnn 6-10
Exampie 4: Repetitive Macro Expansion o i, 6-11

lHlustration

Fig.
No.

6-1 SAmMPIe MACIO USAQE «.cvvtvtuttttmntnieeneteereeeeeeeeanonaesasssenns 6-2

REV A FEB 1981 6-i

8500 MDL A Series Assembler Users

Section 6

MACROS

INTRODUCTION

A macro is a frequently used sequence of assembler statements. Once a group of statements
is defined as a macro in the beginning of your assembly language program, the macro can be
invoked many times.

A macro is invoked with a single line, which generates zero or more lines of assembler
statements. This invocation is called the macro expansion process. The macro can make use
of parameters given in the macro invocation line; with conditional assembly, the macro may
expand differently with each invocation.

This section describes macro definition, invocation, and expansion. An overview of the entire

process is given, followed by a detailed description of each phase of the process. The last part
of this section gives examples of macro usage.

REV A FEB 1981

6-1

Macro Expansion Process Macros—8500 MDL A Series Assembler Users

MACRO EXPANSION PROCESS

The macro expansion process is illustrated in Fig. 6-1.

I:IIACRO macname -—g—————

vvvv <—‘
WWWW

XX XX Macro Body Macro Definition
Yyyy I

2222

ENDM -

macname parml, parm2, parm3 -es—— Macro Invocation

VA'A'AY -

WWWW l

XXXX Macro Expansion
yyyy i

2222 —t

3575-11

Fig. 6-1. Sample macro usage.

The three phases of macro usage are definition, invocation, and expansion.

Definition. A macro is defined with the MACRO directive. The macro is given a name (“macname” in
the figure) that is used later to invoke the macro. The sequence of assembler statemems that make up
the macro follows the MACRQ directive {"vwww”, "wwww” “xxxx”, "yyyv" and "zz77" in the figure). This
sequence of statements is sometimes called the body of the macro. An ENDM directive terminates the
definition.

The assembler saves the macro name and its associated body for later invocation. The contents of the
body are ignored until expansion time.

Invocation. The macro is invoked when the macro name appears in the operation field of an assembly
language statement. One or more parameters may follow the macro name (“parm1”, "parm2”, and
“parm3” in the example). These parameters may be used by the body of the macro to control the
expansion process.

Expansion. Each line from the macro body is inserted into your assembler source program, as if the
program were cut apart at the macro invocation and the invocation line replaced with the entire macro
body. The assembler then interprets the statements within the body as if they were part of the original
source program. Any line of the body may reference the parameters passed to the macro at invocation
time; these references can be used to alter the contents of each assembler line.

6-2 REV A FEB 1981

Macros—8500 MDL A Series Assembler Users Macro Definition

e

MACRO DEFINITION

You define a macro once in your program—before its first use. The macro definition consists
of three parts:

e the MACRO assembler directive, which gives the name of the macro,
® the sequence of statements constituting the body of the macro,
o the ENDM assembler directive, which terminates the macro definition.

You must define any macro prior to its first invocation. You cannot define a macro within
another macro definition.

The MACRO Directive

The MACRO assembler directive begins a macro definition. The format of the MACRO
directive is:

MACRO name ; comments here {optional)

The name is a standard assembler symbol: a letter, optionally followed by one to seven
alphabetic, numeric, dollar sign, underscore, or period characters. Since you use this name
to invoke the macro, it is wise to choose a name that indicates the macro’s function.

The symbol chosen as the macro’s name must be unique—it cannot be identical with any
other symbol used within the assembler source file.

The Macro Body

The macro body is a sequence of assembler statements. Any statements, except the MACRO,
ENDM, and END directives, may be included in the body. The statements can include
processor instructions, assembler directives, invocations of other macros, or even
invocations of the given macro.

Comments and blank lines within the macro body are discarded, since they do not affect
macro expansion.

Macro Body Operators

The macro body can contain special operators not available outside of macro definitions.
These special operators. give the macro access to assembler values, such as:

® each parameter passed to the macro,
® a unique character sequence for each macro invocation,
® the number of parameters passed to the macro, and

® the current section name.

The following paragraphs describe these operators in detail.

REV A FEB 1981 6-3

Macro Definition Macros—8500 MDL A Series Assembler Users

Parameter Access {'1’', '2’, ...}

The macro can access any parameter given when the macro is invoked. Parameters are
identified with consecutive positive integers, starting at 1 for the leftmost parameter. Within
the body of the macro, any number enclosed within single quotes is replaced with the
corresponding parameter from the macro invocation line. For example, during macro
expansion, any occurrence of ‘1’ in the macro body is replaced with the first parameter.

Text substitution can occur anywhere on the line, including text within the comment field. If
text substitution causes the line to exceed 127 characters, an error is generated and the line
truncated. Examples of text substitution can be found in the Macro invocation subsection
later in this section.

The value within single quotes may be either a constant or a numeric-valued SET variable.
Refer to the description of the SET directive in the Assembler Directives section of this
manual for further information on numeric assembler variables.

If the value within quotes is greater than the number of parameters actually provided, a null
string is substituted at the time of expansion.

Unique Label Generation (the @ Character)

The "at” character, when enclosed within single quotes ('@’), is used to provide unique
labels for each macro expansion. Each time a macro is invoked, the ‘@’ construct is replaced
with a unique four-character value. When this value is appended to a one-to-four character
symbol within the macro body, a unique five-to-eight character label is created for each
invocation. In the following example, a unique seven-character label is generated each time
the macro is invoked. That label is used as the destination of a processor jump instruction:

MACRO Q
LAB'€' éQU $

:JNZ LAB' @'

E'ZNDM

If “LAB” had not been followed by the ‘@’ construct in this example, the first invocation of
macro Q would have defined the location of LAB. Any subsequent invocations would attempt
to redefine the location of LAB, resulting in an error.

Determining Parameter Count (the # Character)

The “"pound” character, when enclosed within single quotes ('#’), is replaced at time of
expansion with a five-digit number. This number represents the total number of parameters
passed to the current macro expansion. For example, if three parameters are passed to the
macro, '#’ is replaced with 00003 during macro expansion.

6-4 REV A FEB 1981

Macros—8500 MDL A Series Assembler Users Macro Definition

—

You can use the ‘#' in an assembler !F or REPEAT directive to cause conditional expansion of
the macro to depend on the number of parameters passed. Examples of ‘#’ usage are given in
the Macro Examples subsection, at the end of this section.

Determining Current Section Name (the % Character)

The “percent” character, when enclosed within single quotes ('%’), is replaced by the name
of the current section (as defined with the SECTION or COMMON assembler directives). The
section name is given as a sequence of characters. If the current section is the default
section, ‘%’ is replaced with a null string.

The '%’ construct is usually used when the macro must define instructions or data in a new,
distinct section, and then return back to the original section definition. To accomplish this
task, the macro must save the name into an assembler string variable, change section
names, give the deciarations for the new section, and then use a RESUME directive to return
to the original section, as illustrated in the following example:

STRING SECNAME(8) ; Defines SECNAME as a string of up to
; 8 characters

MACRO Q ; Beginning of macro definition
SECNAME éET mrgrn ; Save current section name in SECNAME

SECTION QQ ; Switeh to new section (QQ)

éESUME 'SECNAME' ; Switch back to previous section

éNDM ; End macro definition

In the above example, the ‘%’ construct is enclosed within double quotes. The SET directive
expects a string expression, but the ‘%’ construct is replaced with a sequence of characters.
When this sequence of characters is enclosed within double quotes, it becomes a string
literal, which is an acceptable string expression.

Disabling Special Character Significance (the A Character)

The up-arrow character (A), when immediately preceeding any special character, disables
the special meaning of that character, and causes the character to be interpreted as part of
the text. In the following example, the up-arrow character removes the special significance of
the singie-quote character:

ASCII "That"'s all, folks!"

REV A FEB 1981 6-5

Macro Invocation Macros—=8500 MDL A Series Assembler Users

e S

When the macro is expanded, the following text string is generated in the program:
That's all, folks!

The ENDM Directive

The macro definition is terminated with the ENDM directive. This directive should not have a
label field.

MACRO INVOCATION

A macro is invoked when its name appears in the operation field of an assembler line. For
example, the macro QQQ is invoked by the following assembler statement:

QQQ ; Comments (if used) go out here

Parameters

The macro body can make use of information given to the macro at the time of invocation.
This information is given as a series of one or more parameters in the operand field of the
macro invocation. Each parameter is a sequence of characters separated from other
parameters by commas. For example, the following assembler statement invokes macro QQQ
with parameters of 123 and ABC:

QQQ 123, ABC ; Invokes macro QQQ
; With parameters 123 and ABC

As QQQ is expanded, any occurrence of 1’ within the macro body is replaced with 123, and
any occurrence of ‘2" is replaced with ABC.

Any number of parameters can be passed to a macro, so long as the invocation line
(including the comment) does not exceed 128 characters. Any parameters given in the
invocation that are not examined within the body of the macro are simply ignored. Any
parameter requested within the body but not given in the invocation is replaced with the null
string.

Macro Parameter Conventions
The Square Brackets

Any leading or trailing spaces surrounding a macro parameter are removed upon macro
expansion. You may, however, force the spaces to be retained by placing the parameter
within square brackets ([]). The square brackets group together all text within them as one
parameter. The brackets themselves are removed during macro invocation. For example,
invoking QQQ with the following assembler line defines the parameters listed below:

QQQ ABC, DEF ,[GHI],[JKL 1, MNO PQR

6-6 REV A FEB 1981

Macros—=8500 MDL A Series Assembler Users Macro Invocation

_

The parameters are listed below, surrounded by asterisks. The asterisks are not part of the
text, however, but are used here to show the leading and trailing spaces.

Parameter '1' = ¥ABC¥*
Parameter '2' = ¥DEF¥
Parameter '3' = ¥GHI*
Parameter '4' = ¥ JKL ¥
Parameter '5' = ¥MNO PQR*¥

A parameter containing a comma must also be surrounded by brackets, or the parameter will
be separated into two distinct parameters. For example, the invocation:

QQQ ABC,DEF,[GHI,JKL]

generates the following parameters (again, the asterisks are not part of the parameters):

Parameter '1' = ¥ABC¥
Parameter '2' = ¥DEF¥
Parameter '3' = *GHI,JKL*

Square brackets may not be nested.

Double Quote Characters

All text enclosed within double quote marks {""') is considered to be a single parameter. The
quote marks are not removed from the text during macro expansion, but are considered as
part of the parameter. For example, QQQ invoked with the assembler line:

QQQ I|ABC" ," DEF’ GHI" y " JKL n , "MNO"

generates the following parameters (again, the asterisks are not part of the parameters):

Parameter '1' = ¥MWABCU¥
Parameter '2' = ¥"DEF,GHI"¥
Parameter '3' = ¥m JKL "¥
Parameter '4' = ¥"MNO"¥

Square brackets can appear within parameters enclosed in quote marks; the brackets in this
case are treated as normal text characters. Double quote marks can appear within a
parameter surrounded by square brackets; the quote marks are then treated as normal text
characters. For example, the macro invocation line:

QQQ ng[Br, {c"Dl, ["™ 1, "I"
generates the following parameters upon expansion (again, the asterisks are not part of the
parameters):
Parameter '1' = %*"A[B"¥
Parameter '2! = ¥C"D¥
Parameter '3' = ¥ " ¥
Parameter '4' = ¥nju¥

REV A FEB 1981 6-7

Macro invocation Macros—8500 MDL A Series Assembler Users

6-8

Null Parameters

Two consecutive commas, or two commas separated only by blanks, define a null parameter.
The parameter is counted in the total parameter count (for ‘#'), and returns a null string if
requested in the body of the macro. For example, the macro invocation line:

QQQ ABC,,DEF, ,GHI,[],JKL

T | l Null parameters

generates the following parameters:

Parameter '1' = ¥ABC¥
Parameter '2' = ¥* {Null parameter)
Parameter '3' = ¥DEF¥
Parameter '4' = *¥ (Null parameter)
Parameter 'S5' = ¥GHI*¥
Parameter '6' = ¥¥ {Null parameter)
Parameter '7' = ¥JKL¥

Leading and trailing commas in the parameter list also generate null parameters, as in the
following example:

QQQ », ABC, ,

Null parameters

Parameter '1' = ¥¥ {Null parameter)

Parameter '2' = ¥¥ (Nuli parameter)

Parameter '3' = ¥ABCH*

Parameter 'U4' = ¥¥ (Null parameter)
- %%

Parameter '5' (Null parameter)

The Up-Arrow Character in Macro Invocations

To include a special character in a macro parameter, the character must be immediately
preceded by an up-arrow (A) character. The up-arrow character disables the special
significance of any character, and is removed before the macro is expanded. For example,
invoking QQQ with the assembler line:

QQQ A*,B , "[CD"], "MEF, G "H, I"'J, K"°T'L

generates the following parameters:

Parameter '1' = ¥4 B¥
Parameter '2' = ¥[CD]*
Parameter '3' = ¥"EF¥
Parameter '4' = ¥G H*
Parameter '5' = ¥I'J¥
Parameter '6' = ¥K"'L¥

REV A FEB 1981

Macros—=8500 MDL A Series Assembler Users Macro Examples

| —

MACRO EXAMPLES

The examples in this subsection illustrate macro usage through typical macro definitions and
expansions.

Example 1: Simple Macro Invocation

In this example, macro QQQ is defined. QQQ contains two assembler statements: a BYTE
directive and a WORD directive. The operands for these assembler statements are obtained
from the parameters given with each invocation of QQQ.

MACRO QQQ ; Beginning of definition

BYTE 5, '1' ; BYTE directive, with a fixed operand
; of 5, and an operand provided by the first
; parameter of QQQ at invocation

WORD 12! ; WORD directive, with operand provided by
; second parameter of QQQ at invocation

ENDM ; End of macro definition

Invoking this macro with the following assembler statement:
QQQ 35, 40

produces the following sequence of assembler statments upon macro expansion:

BYTE 5, 35
WORD 40

During expansion, each occurrence of ‘1’ is replaced with 35 before the assembler statement
is processed. Each occurrence of ‘2’ is similarly replaced with 40. The resulting BYTE and

A INDN H H T
WORD directives are then processed as if the assembler statements had been part of the

original source text.

Example 2: Nested Macro Invocations

In this example, an assembler statement in the body of one macro invokes another macro.
MACRO Q1 ; Beginning of Q1 definition
WORD t1', O ; Generate a word containing

; the first parameter, and a

; second word containing zero

ENDM ; End of Q1 definition

MACRO Q2 ; Beginning of Q2 definition

Q1 i ; Invoke Q1 with first parameter
Q1 2! ; and again with second parameter
ENDM ; End of Q2 definition

REV A FEB 1981 6-9

Macro Examples Macros—=8500 MDL A Series Assembler Users

Invoking Q2 with the following assembler statement:
Q2 3, 5

generates the following equivalent assembler source statements during the expansion
process:

WORD 3, 0
WORD 5, 0

The assembler performs the following steps during evaluation of the Q2 invocation line given
above:

® Q2 is invoked, with parameters of 3 and b.

® The first statement in the body of Q2 is examined. This statement contains a reference
to the first parameter, so the appropriate parameter (the number 3) is substituted before
proceeding.

® The statement invokes macro Q1, with a parameter of 3.

® Q1 is invoked, and the first (and only) statement of Q1 is examined. This statement
contains a parameter reference, so the appropriate parameter (3) is substituted.

® The resulting assembler statement (WORD 3, O} is processed, generating two words of
memory.

® Expansion of Q1 terminates, and expansion of Q2 resumes with the second line in its
body.

@ This line of Q2 has a reference to the second parameter, so the appropriate parameter
(5) is substituted before further processing.

® The assembler statement invokes Q1, with a parameter of b,

® Q1 is invoked as described above, resulting in the assembler statement ” WORD 5,0".
® When the expansion of Q1 is completed, expansion of Q2 resumes.

® Q2 contains no further statements in its body, so expansion of Q2 also terminates.

Example 3: Conditional Macro Expansion

In this example, a macro expands one of two different ways, depending on whether one of its
parameters is present of absent. Macro QQ generates three WORDs of its first parameter,
followed by one WORD of its second parameter. If the second parameter does not exist (or is
null), one word of 13 (decimal) follows the first three words.

MACRO QQ ; Beginning of definition

WORD v, M1, ' ; Generate three words of the first parameter
IF mrornonn ; If the second parameter is null:

WORD 13 ; generate a word of 13

ELSE ; Else, (if the second parameter is not null):
WCORD r2r H generate a word of the second parameter.
ENDIF ; Terminate the conditional assembly block
ENDM ; Terminate the macro definition

6-10 REV A FEB 1981

Macros-—8500 MDL A Series Assembler Users Macro Examples

|

Invoking this macro with the following assembler statement:
QQ 5, 24

generates the following assembler statements:

WORD 5, 5, 5
WORD 24

Invoking this macro with the following assembler statement:

QQ 7

produces the following sequence of assembler statements:

WORD 7, T, 7
WORD 13

Iin the first invocation, both parameters are specified. During the expansion of QQ, the IF
directive substitutes the appropriate parameter and evaiuates the expression "24”="". This
expression is false, and the statements between the IF statement and the ELSE statement
are skipped.

In the second invocation, the expression at the IF statement reduces to "”="". This
expression is true, so the assembler statements between the IF and ELSE are processed, and
the statement between the ELSE and ENDIF is skipped.

Example 4: Repetitive Macro Expansion

In this example, a macro performs a single operation on each of its parameters. The macro
contains a REPEAT..ENDR loop that is controlled by the '#' value.

MACRO BACK ; Beginning of macro definition
PARMCNT SET 1 ; Initialize the parameter counter

REPEAT PARMCNT<="'#" Repeat the following group of
assembler statements while the
current parameter count is less

than or equal to the total number
of parameters

e s we Gy e

BYTE HI('PARMCNT') ; Store the high byte
BYTE LO('PARMCNT ") ; followed by the low byte of the
; selected parameter
PARMCNT SET PARMCNT +1 ; Advance to the next parameter
ENDR ; and repeat as necessary
ENDM ; End of BACK definition

REV A FEB 1981 6-11

Macro Examples Macros—8500 MDL A Series Assembler Users

Macro BACK takes each of its parameters (one at a time), and generates two bytes for that
parameter: the most significant byte of the parameter, followed by the the least significant
byte. For example, the assembler statement:

BACK 25, 26, 27, LAB

generates the following assembler statements during the expansion of BACK:

BYTE HI(25)
BYTE L0(25)
BYTE HI(26)
BYTE LO(26)
BYTE HI(27)
BYTE LO(27)
BYTE HI(LAB)
BYTE LO(LAB)

The assembler performs the following operations during this expansion of BACK:

® BACK is invoked with the indicated parameters.

® The assembler variable PARMCNT is initialized to 1. PARMCNT always contains the
number of the parameter currently being processed.

® The REPEAT loop is entered. The expression PARMCNT<='# is expanded to
PARMCNT<=4, since the total parameter number is 4. This expression is true (1 is less
than 4), so the body of the REPEAT loop is evaluated.

® The assembler directive BYTE HI('PARMCNT') is expanded to BYTE HI{25). PARMCNT
contains 1, so the first parameter is substituted for 'PARMCNT’. This assembler
directive is then processed.

® In a similar manner, BYTE LO('PARMCNT’) is expanded and processed.
® To select the second parameter, PARMCNT is incremented by one.

® The REPEAT loop is processed again, with PARMCNT equal to 2 (selecting the second
parameter of 26). At the end of the loop, PARMCNT is incremented once again to 3.

® The REPEAT loop is processed once again, generating bytes for the third parameter (27).
PARMCNT is again incremented.

® The REPEAT loop is processed once more, generating bytes for the fourth (and last)
parameter, LAB. PARMCNT is incremented, and now contains the value 5.

® The expression of the REPEAT loop, PARMCNT<='#', is no longer true, since PARMCNT
{5) is now greater than 4 (the total parameter count). The statements within the REPEAT
loop are skipped, and processing continues after the ENDR statement.

® Expansion of BACK terminates, because no more statements remain to be processed.

B5-12 REV A FEB 1981

8500 MDL A Series Assembler Users

U

Section 7
THE LINKER
Page

[FET R 8o Te L0 1ot Lo 1 WSS g 7-1
Linker INVOGAtION « . oottt ittt ittt ettt e e et e ettt -1
Simple INVOCATION e 7-2
Interactive INVOCELION . L ittt it i it e ittt ittt et e 7-3
Command File INVOCATION. ..ottt i it it ettt te e eieee e inaenaennn 7-4
Linker EX@CULION ... ottt it ittt i e e et teea i e e santn e eaennennns 7-5
SECHON AT DULES . oo ittt ittt et ettt e e e 7-5
AlIOCatION Of SECHIONS ¢ ittt et it ittt ittt ettt ite s iaeeanaaneanncnnenaens 7-6
8 N1 512 =1 A 7-7
Linking a Library File ... o e 7-7
LinKer OuUtPUL ...ttt e 7-8
LiSting File . n et i e i e 7-8

Global Symbol List. ...t it e it i 7-9

Internal Symbol Listcoiiiiiiiii i s 7-9

VLD &t e ettt ettt e e e e e e e e e i 7-10

LINKEr SAtiStiCS . ottt ettt ettt ettt et et ettt e e 7-11
] o 1V, F=YoT=T= Vo 1= 7-11
Linker Commandsc.uiiniiii ittt ittt e 7-14
Input/Output File Specifications:

@filespec—Invokes a linker command file il 7-15

LINK—Designates input file(s) ...t it 7-18

LIST—Designates listing file 7-19

LOAD—Designates load file ...ttt i i i 7-20
Relocation Commands:

DEFINE—Gives value to global symbol..... i i 7-16

END—Signals end of linker command sequenceccoiiiiininenen... 7-17

LOCATE—Changes section attributes i, 7-21

TRANSFER—Specifies program start address.......... ..ottt .. 7-26
Listing Options:

LOG—Enables command recordingc.uueiiiviiniin i eenreaenaeenaannans 7-22

MAP—Includes map in HSting ...ttt e et iene e 7-23

NOLOG—Disables command recordingc.c.veeiiiriinneineeennanenneenns 7-24

NOMAP—Does not include map in listing i 7-25
Command Processing Errors.o i i i i i i e 7-27

REV A FEB 1981 7-i

8500 MDL A Series Assembler Users
"

Section 7
THE LINKER

INTRODUCTION

NOTE
The information in this section supports DOS/50 Version 1 and DOS/50 Version 2.

The linker merges one or more independently-assembled object files into a load file, suitable
for loading into memory. Linker input may come from the assembler, or from library files.
(See the Library Generator section of this manual for further information on library files.)

This section describes the operations and use of the linker, and is divided into the following
subsections:

e Linker Invocation. Describes how you invoke the linker, using the operating system LINK
command.

o Linker Execution. Describes operations performed by the linker.
® Linker Output. Describes the listing file generated by the linker.

e Linker Commands. Presents a detailed description of each command used to control
the operation of the linker.

Some typical uses of the linker are presented in the Operating Procedures and Programming
Examples sections of this manual.

LINKER INVOCATION

NOTE

The linker must know what the target processor is in order to operate properly. Thus,
you must use the DOS/50 command SEL prior to invoking the linker.

You may invoke the linker by one of the following three methods:

e Simple Invocation: Requires you to specify only the input and output filespecs. Other
linker parameters are set to default values. This method is adequate for most linking
situations.

® Interactive Invocation: Allows you to control the linker more precisely using a series of
commands. These commands define global symbols, listing content, and linker
parameters, and specify section attributes and location. The commands used in
interactive invocation are given later in this section.

e Command File Invocation: Allows you to place commands normally given in interactive
invocation into a file. You can then direct the linker to process those commands when
you specify only the filespec of that file.

REV FEB 1983 7-1

Linker Invocation (simple) Linker—8500 MDL A Series Assembler Users

e A

Command file invocation is helpful whenever a particular sequence of linker commands
must be used more than once. The sequence of commands can be entered once to a file,
then processed many times by the linker. If you invoke the linker from an operating system
command file, and simple invocation of the linker is not sufficient, then linker command file
invocation can be used. In this case, interactive invocation requires you to be present
during the linker’s execution; this is generally not true in normal use of the operating
system command files.

The method of invocation that you choose will depend on the linking situation. Each type of
invocation is described in detail in the following pages.

Simple Invocation

SYNTAX
{LIB(Iibrary)}
LINK [load] [list] object
load The filespec of the linker-created load file.
list The filespec of the file or device that receives the linker listing file.
object The filespec of an object file to be linked.
library The filespec of a library file to be linked.
EXPLANATION

In simple linker invocation, you specify all input and output files in a single command line.
The one or more object and library files are linked together to produce the load file. The
linker’s listing can be directed to a device or file, aiso specified in the command line.

Filespecs may not exceed 64 characters in length. If the complete filespec is longer than 64
characters, you may use a brief name for a portion of the filespec.

The load filespec may not begin with the “@" character, which would cause the filespec to
be interpreted as a command file invocation. To prevent misinterpretation, precede the
filespec with /USR/.

Similarly, an object filespec may not begin with the characters “LIB(”. This would cause the
filespec to be interpreted as a library. To prevent misinterpretation, precede the filespec with
/USR/.

EXAMPLES

LINK LOAD LNKL OCBJ

This invocation line links the object file OBJ to produce the load file LOAD and the listing file
LNKL. All the files reside in the current directory.

7-2 REV FEB 1983

Linker—8500 MDL A Series Assembler Users Linker Invocation (interactive)

LINK,,LPT MY1.0BJ MY2.0BJ

This invocation line links MY1.0BJ and MY2.0BJ (both in the current directory) generating a
listing on the line printer (LPT). No load file is generated.

LINK LOAD LNKL MY1.0BJ MY2.0BJ LIB(/SYS/MY.LIB)

This invocation line links object files MY1.0BJ and MY2.0BJ (both in the current directory) to
produce listing file LNKL and load file LOAD. If any unbound (undefined) globals remain after

the two object files are linked, the linker will search through library file MY.LIB (in the system
directory) for definitions of these unbound globals

Y/ b LOUNL giodls.

Interactive Invocation

SYNTAX
LINK

EXPLANATION

When you enter the LINK command without any parameters, the linker is invoked in
interactive mode. The linker displays a prompt character (an asterisk), and waits for you to
enter a series of linker commands. When you enter the linker END command, the linker
processes the files you have specified in a linker LINK, LIST, or LOAD command line.

section).

NOTE

The operating system LINK command (described here) invokes the linker. The
linker also has a command called LINK, which specifies a series of input files
to the linker; that command is described in the Linker Commands subsection
of this section. These two commands have distinctly different functions, and
should not be confused.

REV FEB 1983 7-3

Linker Invocation (command file) Linker—8500 MDL A Series Assembler Users

—

Command File Invocation

SYNTAX
LINK @command-filespec
PARAMETERS
command-filespec The filespec of a file or device (CONI, PPRT, etc.) from which the linker

will read a series of commands.

EXPLANATION

This type of linker invocation is similar to interactive invocation, but commands are read from
the designated file or device, rather than from the system terminal. Commands are taken
from the file (or device) until the END command is read, or the end of the file is reached
(whichever comes first).

Filespecs may not exceed 64 characters in length. If the complete filespec is longer than 64
characters, you may use a brief name for a portion of the filespec.

EXAMPLES

LINK €LNKC

This invocation line executes the linker commands contained within file LNKC in the current
directory.

7-4 REV A FEB 1981

Linker—8500 MDL A Series Assembler Users

LINKER EXECUTION

A program consists of one or more object modules. Each object module contains one or more
sections. Each section is an independent entity: a contiguous block of instructions and data
that will eventually be located somewhere in memory. The linker derives the final position of
each section in accordance with the attributes of the section. These section attributes,
provided in the object module by the assembler, are described in the following paragraphs.

NOTE

Throughout this discussion, "section” (in lowercase) refers to an assembler-
generated SECTION, COMMON, or RESERVE program/data block.

"SECTION” (all uppercase) refers only to a program/data block generated
with the SECTION assembler directive.

Section Attributes

Every section has five attributes that provide the linker with the necessary memory allocation
information. These section attributes are name, section type, size, relocation type, and
memory location.

Name: Each section has a name of up to eight characters. The name is
assigned to the section with a SECTION, COMMON, or RESERVE
assembler directive. The section name can be used as a global symbol to
reference the first memory address of a section.

Section type: Each section is of type SECTION, COMMON, or RESERVE, as defined by
the corresponding assembler directive.

Each SECTION must have a unique name. Multiple SECTIONs having
the same name are flagged as errors.

All COMMON sections having the same name are allocated the same
space and beginning address in memory. The length of this memory
space is the size of the largest COMMON section of this name.

All RESERVE sections having the same name are concatenated by the
linker. The length of a given RESERVE section in the program is the sum
of all RESERVE sections having that same name.

Size: The size of each section, determined at assembly time, is the total
number of memory bytes that the instructions or data of the section
must occupy.

REV A FEB 1981

Linker Execution

7-5

Linker Execution Linker—8500 MDL A Series Assembler Users
Lo - ...]

Relocation type: Each section has one of four relocation types: byte-relocatable, inpage-
relocatable, page-relocatable, or absolute (non-relocatabie).

Byte-relocatable sections may be placed anywhere within the
microprocessor address space.

Inpage-relocatable sections are placed entirely within a microprocessor
page. The length of the page is microprocessor-specific. Page length for
each microprocessor is given in the corresponding Assembler Specifics
section elsewhere in this manual. If an inpage-relocatable section
exceeds one page in length, the linker displays an error, redefines the
relocation type of the section to be page-relocatabie, and continues the
linking process.

Page-relocatable sections begin on a page boundary (an integral
multiple of the page length).

Absolute sections are not relocated by the linker. Their position in
memory is determined at assembly time through the use of the ORG
directive. If two absolute sections are both designated by the assembler
for the same memory area, the linker notes this conflict on the memory
map, and the contents of this memory area are undefined.

Memory location: The memory location of all absolute sections is defined at assembly
time. For relocatable sections, a beginning address or range of
addresses may be specified with the LOCATE command at link time. The
default address range for a relocatable section is the entire
microprocessor addressing space.

Allocation of Sections

The linker computes an address range for each section to exclusively occupy in the linked
program. Sections with more restrictive relocation types are given the first opportunity to
obtain their required addresses. For exaimpie, ain absoiuie section is aiiocated its (very)
restrictive address range before any relocatable section is linked. The precise order of linking
is as follows:

1. Absolute sections.

2. Based sections: any sections defined with the BASE attribute in the linker LOCATE
command.

3. Ranged page-relocatable sections: any page-relocatable sections further restricted
with a RANGE, as specified with the linker LOCATE command.

Ranged inpage-relocatable sections.
Ranged byte-relocatable sections.
Page-relocatable sections.

Inpage-relocatable sections.

0 N o o A

Byte-relocatable sections.

7-8 REV A FEB 1981

Linker—8500 MDL A Series Assembler Users Linker Execution
W

When a memory location for a section is being chosen by the linker, the lowest memory
address range that meets the relocation requirements (as well as addition restrictions
presented in the LOCATE command) will be allocated to the section. For example, if the
program consists only of 10 byte-relocatable sections, all 10 sections will be located in a
contiguous block of memory starting at 0000.

Absolute and based sections are linked even if a conflict occurs (that is, when two or more
sections have bytes at the same address). Any conflicts are noted on the linker memory map.
Other section types are not linked if a conflict occurs. In any memory area where conflict has
occurred, the contents are undefined.

Normally, the instructions and data for a section define a contiguous block of bytes in
memory. However, some absolute sections of the program can be discontinuous as a result
of the assembler ORG directive. Such sections define instructions and data for non-
consecutive bytes of memory. The linker recognizes the gaps between the instructions/data
of the section, and places other (relocatable) sections in these gaps. For example, if the
assembler statement ” ORG $+128" is present in an absolute section at assembly time, a gap
of 128 (decimal) bytes is created within that section. The linker can then place any
combination of relocatable sections into this gap, as long as the total number of bytes taken
does not exceed 128.

ENDREL

ENDREL is a predefined global symbol. At link time, ENDREL is assigned the memory address
that is one higher than the highest memory address assigned to any relocatable section (not
absolute or based). Be aware that some absolute or based sections may be allocated memory
that is higher than the address given by ENDREL.

If you do not reference ENDREL, no value is assigned. If you define a value for ENDREL, your
value will take precedence over the predefined value.

Linking a Library File

If any undefined global symbols remain in the linker’s global symbol table, and a library file
has been specified, the linker examines the library file to determine of some or all of the
undefined globals are defined in one of the library modules within that file.

Each module in the library contains a list of all global symbols defined within that module.
Global symbols include section names, addresses within sections, and scalar values declared
global at assembly time.

When a definition is found within a library module for an undefined global symhal, then that

202,

entire module is linked along with all other object moduies. Only the modules that provide

p ~ A B £ 1 N ! limtad +4 ~F H 1,3
necded definitions for globa!l symbols are linked, the rest are simply skipped.

REV A FEB 1981 7.7

Linker Output Linker—8500 MDL A Series Assembler Users

==,

The linker processes files in the order that the files are specified. If an object file requires
that a library module be linked, you must specify the object file first. If a library file were to be
specified first in a linker invocation, none of the library modules would be linked; when the
linker processes the library, the global symbol table contains no undefined entries, causing
the linker to skip the library. In general, the safest way to specify files in the command line is
to list all object files before all library files.

Further information about libraries can be found in the Library Generator section of this
manual.

LINKER OUTPUT

The linker generates two files. The load file contains the executable program instructions
and data. The load file can be loaded into program memory with the operating system LOAD
command. The listing file contains a summary of the actions performed by the linker. Either
of these files can be omitted in any linker invocation. The listing file is described in the
following paragraphs.

Listing File

The listing file summarizes the operations performed during the linking process. The listing
file can be directed to any output device or file. The following information is included in the
linker listing file:

Simple Invocation Interactive Invocation
Global Symbol List Yes Yes
Internal Symbol List If selected in assembler If selected in assembler
Map Yes If selected
Linker Statistics Yes Yes
Error Messages If necessary If necessary

Each of these listing items is described in the following paragraphs.

NOTE

Throughout this subsection, annotations are added to the listing samples to
aid your understanding. These annotations are enclosed in square brackets
(]l and are not generated by the linker.

7-8 REV A FEB 1981

Linker—8500 MDL. A Series Assembler Users Linker Output

E

Global Symbol List

The global symbol list contains an alphabetic list of all global symbols and their values. These
global symbols include those symbols defined with the assembler GLOBAL directive, as well
as the names of SECTION, COMMON, and RESERVE sections. If a global symbol is
undefined, its value fiela contains asterisks. In the following example, the global symbol QQQ
is undefined, but was referenced by one or more object files.

TEKTRONIX 8080/8085 LINKER V x.x GLOBAL SYMBOL LIST PAGE X

Q1 1000 Q2 0500 QQQ ®%%% X{SECT 0060
X2 SECTA O4SF X2 SECTB 0640 [QOQ is undefined]

Internal Symbol List

The internal symbol list contains all symbols (other than strings and macros) defined in the
assembler source file, along with their actual values after relocation. The internal symbol list
parallels the assembler symbol table listing for the selected file. The list consists of three
parts:

1. Alphabetical list of scalars used in the assembly.
2. Alphabetical list of labels occurring within each section.
3. Alphabetical list of labels derived from each unbound global symbol.

if there are no labels for a section, or no labels derived from an unbound global, then that
section or unbound global is not indicated.

A sample internal symbol list follows.

TEKTRONIX 8080/8085 LINKER V x.x INTERNAL SYMBOL LIST PAGE X

FILE: QQ.OBJ I[input filespec]
MODULE: IO_DRVR [name assigned with the assembler NAME directive]

SCALARS: [non-address symbols]

A 0007 B 0000 C 0001 D 0002
E 0003 H 0004 L 0005 M 0006
PSW 0006 Q2 05060 R1 1EQC SP 0006

X1VALUE 007F X2VALUE 0030

LABELS: (SECTION IO_AREA) [all address symbols within section I0_AREA]
L1 0100 L2 0130

LABELS: (SECTION IO AREA2) I[all address symbols within section 10_AREA 2]
Q1 0150 Q2 0155

LABELS: (GLOBAL IO_PORT) (fall symbols derived from global 10__PORT]
I0 PORT1 0070 IO PORT2 0071

The internal symbol list is displayed only for those object modules that were generated with

the LIST DBG assembler option. Refer to the Assembler Directives section of this manual for
further information about the LIST directive.

REV A FEB 1981 7-9

Linker Output Linker—8500 MDL A Series Assembler Users

%

7-10

Map

The map consists of two parts: a module map, and a memory map. The map is included in the
listing file only if the linker MAP command has been specified.

A module map lists all modules linked into the load file. The module map contains
information about sections and global symbols defined in each object module.

TEKTRONIX 8080/8085 LINKER V x.x MODULE MAP PAGE X

FILE: FILE1.0BJ Iinput filespec, as specified in LINK command]

MODULE: MAINMOD [module name, from assembler NAME directive]

DO I0 SECTION BYTE 3700-3E40 [abyte-relocatable SECTION]

INPUT 3400 OUTPUT 3B50 [globals defined within this section]
MAINPROG SECTION BYTE 3EU1-5141 [another byte-relocatable SECTION]
ENTRY1 4091 ENTRY2 43A1 [globals defined within this section]
STACK RESERVE PAGE 3600-36FF [a page-relocatable RESERVE section]

FILE: FILE2.0BJ [end of first file, beginning of second file]

MODULE: SUBMOD [module name, from assembler NAME directive]
ABSECT?2 SECTICN ABSOLUTE 0040-0357 [absolute SECTION]

ENTRY3 0090 [global address within section]
RELSECT2 SECTION PAGE 0400-2400 [page-relocatable SECTION]
ENTRY4 0450

[global address within section]

FILE: FILE3.0BJ [end of second file, beginning of third file]

MODULE: SUBS2MOD [module namel
RELSECT3 SECTION PAGE 2500-3500 [a page-relocatable SECTION]

The module map lists all linked modules. An alphabetical list of sections and entry points
(globals defined within each section) is included for each module. If no sections were linked
in @ module, no room for a section exists, or a section is empty, an appropriate message is
included in the module map.

A memory map is an ordered listing of the memory allocated to sections. The list starts with
the lowest allocated address and continues to the highest allocated address. For every

address range, each section name and its attributes are given. An example of a typical
memory map follows:

.s.:;:..

TEKTRONIX 8080/8085 LINKER V x.x MEMORY MAP PAGE X
[beginning-ending address]
[section name]
[section type]
[relocation type]

0040-0357 ABSECT2 SECTION ABSOLUTE
0400-2400 RELSECT2 SECTION PAGE
2500~3500 RELSECT3 SECTION PAGE
3600-36FF STACK RESERVE PAGE
3700-3E40 DO IO SECTION BYTE
3E4A-5141 MAINPROG SECTION BYTE

REV A FEB 1981

Linker—8500 MDL A Series Assembler Users Error Messages

X

Any address conflict (two or more sections assigned to the same address) is noted by an
asterisk (*) following the address range in which the conflict occurs.

Linker Statistics
The linker statistics give the number of errors, undefined symbols, modules, sections, and
the transfer address.

NO ERRCRS NO UNDEFINED SYMBOLS
3 MODULES 6 SECTIONS
TRANSFER ADDRESS IS 3E4A

The transfer address identifies the program starting location. After loading this example program,
you could start execution by entering the operating system command “G 3E4A”.

Error Messages

Error messages are issued wherever necessary. Three types of error messages can appear:
1. Warnings (W): A problem exists but the linked program can probably be executed.
2. Errors (E): A linked program probably will not execute properly.

3. Fatal Errors (F): Any error directly affecting the linker’s ability to continue; the linker
terminates execution, and contro! returns to the operating system.

All errors cause a message to be displayed in the linker listing file and on the system
terminal.

In the following list, each error message is indicated as being a warning (W), error (E), or fatal
error (F).

ATTEMPT TO RE-DEFINE FILE TYPE FOR filespec. (W) filespec was specified twice: once
as an object file, and once as a library file. The linker uses the first file type specified.

idname 1/0 ERROR #nn. (E) The linker was unable to read from or write to idname. (either
LIST FILE, LOAD FILE, CONSOLE, COMMAND FILE, or OBJECT FILE). The error number is
the corresponding operating system SVC (service call) SRB status byte. Refer to the Error
Messages section of the 8550 System Users Manual for a description of the error.

IMPLICIT REORIGIN TO O IN SECTION sec IN MODULE mod FILE file. (W) A section has
wrapped around from the last memory location to location O.

REV FEB 1983 7-11

Error Messages Linker—8500 MDL A Series Assembler Users
L

INVALID OBJECT FORMAT AT LOCATION = nnnn.

IN FILE filespec. (E) The information contained within the file is not an object module. Verify
that the designated object file has been generated by the assembler, or that LIB{) surrounds
the library filespec. nnnn indicates the internal linker address where the object file error was
detected.

LINKER INTERNAL ERROR AT nnnn. (E) An error occurred in the linker; try linking again.
If this error persists, carefully document the incident and submit an LDP Software
Performance Report to Tektronix.

MACHINE REDEFINED FROM processor IN MODULE mod FILE file. (W) The current
object module has been generated for a different microprocessor than the previous object
modules. Incompatibilities during linking may result from differences between
microprocessors, such as page length, byte order, etc.

MEMORY FULL. (E) The linker requires more memory to complete its task. The total number
of globals, sections, or object modules must be reduced in order to link in the available
memory.

NO ROOM IN RANGE mmmm-nnnn FOR SECTION sectname. (E) The length of the
indicated section is greater than available contiguous memory in range mmmm-nnnn of
allocated section memory.

RELOCATION TYPE OF SECTION sec MULTIPLY DEFINED IN MODULE mod FILE fin.
(W) An attempt was made to redefine the section relocation type (byte, page, inpage, or
absolute). This occurs when you use the LOCATE command to define a relocation type
different from the type specified at assembly time. The error also occurs when relocation
attributes of a COMMON or RESERVE section differ between modules. The linker uses the
first-encountered relocation attribute to define the section.

SECTION sectname CHANGED FROM INPAGE TO type RELOCATABLE. (W) Section
length is greater than the page size of the microprocessor. This can occur if several inpage
RESERVE sections are linked together and their total size exceeds the page size of the
microprocessor. A section declared to be inpage-relocatable in a LOCATE linker command
generates this error if the section exceeds microprocessor page size. type is replaced with
PAGE for sections smaller than available page size, or BYTE for sections larger than the
microprocessor page Ssize.

7-12 REV A FEB 1981

Linker—8500 MDL A Series Assembler Users Error Messages

SECTION sectname CHANGED FROM PAGE RELOCATABLE. (W) Either the section was
declared to be page-relocatable and the linker does not support paging for the
microprocessor; or there was insufficient room for a paged section in available memory. In
either case, the relocation type is changed to byte-relocatable.

SECTION sectname EXCEEDS MAXIMUM SIZE. (E) Section length is greater than the
address space of the microprocessor. The section is not included in the load file. This error
may occur when a concatenated RESERVE section is too long.

symbolname MULTIPLY DEFINED IN MODULE modname FILE filespec. (E) An attempt
was made to redefine a global symbol or section. This error occurs when two modules define
a global or section of the same name. All section names must be unique. The linker uses only
the first definition of a section or global symbol in the load file.

TRANSFER ADDRESS MULTIPLY DEFINED IN MODULE mod FILE filespec. (W) The
module has attempted to define the transfer address when an address has already been
provided (either by another module or by the linker TRANSFER command). The linker uses
the first-encountered transfer address to generate a transfer address for the load file.

TRANSFER ADDRESS UNDEFINED. (W) The transfer address has not been provided for
this program. The transfer address can be provided either by a linker TRANSFER command,
or as the optional expression value in an assembler END directive. When no transfer address
is specified, the linker subsiiiuies a transfer address of GOO00.

TRUNCATION ERROR AT nnnn IN MODULE mod FILE filespec. (W) The relocated value
computed for a byte is too large to fit in one byte.

UNABLE TO ASSIGN name. (E) The file or device name specified as an object or library file
does not exist, or the output device is unavailable.

UNRESOLVED REFERENCE AT nnnn MODULE modname FILE filespec. (E) A reference
to an unbound (undefined) global or section is specified at address nnnn in the object
module. This error occurs when a global symbol is used in a module but not defined. The
referenced symbol appears in the linker global symbol list with an undefined value {indicated
by asterisks), and the unresolved reference is filled with zeros in the load file.

REV A FEB 1981 7-13

Linker Commands Linker—8500 MDL A Series Assembler Users

LINKER COMMANDS

Linker commands are used when you invoke the linker interactively or with a command file.
Each linker command must be on a separate line.

in the following command descriptions, the same conventions are used as described in the
Assembler Introduction section of this manual.

NOTE
All commands must be entered in their given form. Commands may not be
abbreviated.

All filespecs in linker commands are limited to 64 characters in length. If the complete
filespec is longer than 64 characters, you may use a brief name for a portion of the filespec.

DOS/50 allows any printing character (except the space) to appear in filespecs. The linker, how-
ever, allows only the following characters:

e The first character must be an uppercase letter or the slash character (/).
e Each remaining character in the filespec must be a printing character between ! (ASCII

21H) and _(ASCIlI 5FH); however, plus, comma, and minus (ASCIl 2BH, 2CH.and 2DH)
are not permitted.

In particular, lowercase letters may not appear in filespecs. Before invoking the linker, you may
use the appropriate DOS/50 commands to alter any filespecs, as necessary.

7-14 REV A FEB 1981

Linker Command: @filespec
Linker—8500 MDL A Series Assembler Users Invokes a linker command file

]

LINKER COMMAND DICTIONARY

SYNTAX
@filespec
PARAMETERS
filespec The filespec of the command file containing a sequence of linker
commands.
EXPLANATION

This command invokes filespec as a command file. The command file contains a series of
linker commands. Commands are read from the file and processed as if you had entered
them from the system terminal, until the END command is read or the end of file is reached.
Commands are echoed on the system terminal as they are processed. When the end of the
command file is reached, you will be prompted for additional linker commands. Nested
command files are not allowed: a command file may not invoke another command file.

EXAMPLES

@ADD.LNKC

This linker command invokes command file ADD.LNKC. Additional linker commands will be
read from file ADD.LNKC and processed, until the end of file is reached, or until an END
command within ADD.LNKC is processed.

SYNTAX

DEBUG

EXPLANATION
The DEBUG command causes all symbols and their values tc be stored in the load module. This
makes your program symbols available for use in symbolic debug.

The DEBUG command may only be used in interactive invocation or command file invocation.

REV FEB 1983 7-15

Linker Command: DEFINE Linker—8500 MDL A Series Assembler Users

Gives value to global symboi
L e

NOTE

All assembly source files that have symbols to be referenced by symbolic debug must
include the assembler directive LIST DBG. This directive causes the assembler to
output the symbols to the object module, which makes the symbols available to the
linker. (The size of the object module is increased appreciably.)

If you relink a load module that has been generated with the DEBUG command, the
symbols will be relisted at link time.

For further information, see the topics, DEBUG, LIST DBG, and symbolic debug in the
8550 System Users Manual (DOS/50 Version 2).

SYNTAX
DEFINE symbol=value[,symbol=value]...
PARAMETERS
symbol A global symbol.
value A hexadecimal constant.

EXPLANATION

The DEFINE command assigns values to selected global symbols. Each symbol is entered into

o o~ ahla Aand acginna

the global symbo! table and assigned the corresponding value. Even if the global symbol was
previously defined (by an object module), the value you specify in a DEFINE command
replaces the already-defined value.

EXAMPLES

DEFINE XXX=400, YYY=1FFF, IO_PORT=3E

This DEFINE command gives values to the global symbols XXX, YYY, and I0_PORT.

7-16 REV FEB 1983

Linker Command: END

Linker—8500 MDL A Series Assembler Users Signals end of linker command sequence

X

SYNTAX
END

EXPLANATION
The END command signals the end of the command sequence. You enter this command to
start the linking process after you have completed entering all other linker commands.
This command must be used in interactive invocation, but can be omitted for command file

invocation. If END is omitted in command file invocation, the linker begins the linking process
when the end of the command file is reached.

REV A FEB 1981 7-17

Linker Command: LINK

Designates input file(s) Linker—8500 MDL A Series Assembler Users

SYNTAX
{ueuibraryl [,LIB(Iibrary)]
LINK object ,object
PARAMETERS
object The filespec of an object file to be linked
library The filespec of a library file to be linked

EXPLANATION

The LINK command designates the input object and library files that make up the program.

More than one LINK command can be specified in a sequence of linker commands.
Successive LINK commands specify additional object and library files. For example, the
command “LINK A, B, C” is identical in function to the command “LINK A” followed by
commands "LINK B” and "LINK C”.

An object filespec may not begin with the characters “LIB(”. This would cause the filespec to
be interpreted as a library. To prevent misinterpretation, precede the filespec with /USR/.

NOTE

The linker LINK command (described here) specifies a series of input files to
the linker. The operating system also has a command called LINK, which
invokes the linker; that operating system command is described earlier in this
section under “Linker Invocation”. These two commands (both called LINK)
have distinctly different functions, and should not be confused.

EXAMPLES

LINK MY.OBJ

This command selects object file MY.OBJ in the current directory to be linked.
LINK MY1.0BJ, MY2.0BJ

This command specifies object files MY1.0BJ and MY2.0BJ in the current directory to be
linked.

LINK MY.OBJ, LIB(/SYS/MY.LIB)

This command specifies object file MY.OBJ in the current directory to be linked. If the object
module within MY.OBJ contains any unbound global symbols, the linker searches through
library file MY.LIB in the system directory for definitions of those symbols.

7-18 REV A FEB 1981

Linker Command: LIST

Designates listing file

Linker—8500 MDL A Series Assembler Users

X

SYNTAX
LIST filespec
PARAMETERS
filespec The filespec of the file or device of the linker listing.

EXPLANATION

The LIST command designates the file or device that is used for the linker listing. The
contents of the listing file are described earlier in this section under “Linker Qutput.”

EXAMPLES

LIST LPT

This LIST command designates the line printer (LPT) to receive the linker listing.
LIST MY.LNKL

This LIST command designates disc file MY.LNKL (in the current directory) to receive the
linker listing.

REV A FEB 1981 7-19

Linker Command: LOAD

Designates load file Linker—8500 MDL A Series Assembler Users

SYNTAX
LOAD filespec
PARAMETERS
filespec The filespec of the output load file.

EXPLANATION

The LOAD command designates the output file that receives the linked program. After linking, the
file designated by the linker LOAD command may be brought into program memory, using the
operating system LO command.

EXAMPLES

LOAD MY.LOAD

This LOAD command designates MY.LOAD in the current directory to receive the linked

program.
NOTE
The iinker LOAD coimimand (described herej specifies the ouiput fite ihat contains the

program after linking. The operating system has a command called LO, which transfers
a file into program memory; that command is described in the 8550 System Users
Manual. These two commands (LOAD and LO) have distinctly different functions, and
should not be confused.

7-20 REV FEB 1983

Linker Command: LOCATE

Linker—8500 MDL. A Series Assembler Users Changes section attributes
I---ﬂ--------I-I--------------.------.--.-----l

SYNTAX
,PAGE
.BASE(starting-address) ANPAGE
LOCATE section-name |, RANGE(starting-address,ending-address)|| ,BYTE
PARAMETERS
section-name The name of any section contained within the input object modules.

starting-address A hexadecimal number representing a starting address.

ending-address A hexadecimal number representing an ending address.

EXPLANATION

The LOCATE command aiters the attributes of a SECTION, COMMON, or RESERVE section.
The BASE parameter designates that the section shouid begin at the specified address. The
RANGE parameter directs the linker to place the section anywhere within the given address
range, as long as the beginning and ending addresses of the section lie within that range,
and the location conforms to the relocation attribute (byte, inpage, page, or absolute).

The PAGE, INPAGE, or BYTE parameter redefines the relocation type of the designated
section. When you redefine the relocation type of a section, the linked code may execute
differently than you intended. Certain portions of the code may expect or require that a
section of code be located in a particular memory location type {on a page boundary, within a
page, etc.). Whenever you use the PAGE, INPAGE, or BYTE parameter, and the relocation
type differs from the type given to the section at assembly time, the linker will generate a
warning message.

EXAMPLES
LOCATE MYSEC.A, RANGE (2000, 2FFF)

This command informs the linker that section MYSEC.A should be placed entirely within the
range of 2000 to 2FFF (hexadecimal). If MYSEC.A is longer than 4096 bytes, or MYSEC.A
cannot be located in the designated area, an error is generated.

LOCATE MYSEC.B, BASE(4000)
This linker command designates that MYSEC.B begins at memory location 4000.

T AAATD uvan, o PAGE
LUVALL MIoLbV.L, Ay

This linker command redefines MYSEC.C to be page-boundary relocatable. The linker will
attempt to place the first address of MYSEC.C at a page boundary. A warning message wil
be displayed if MYSEC.C was not defined to be page-relocatable at assembly time.

LOCATE MYSEC.D, RANGE(8000,FFFF), BYTE

This linker command designates that MYSEC.D will be placed somewhere in the upper 32K
of memory, and redefines MYSEC.D to be byte-relocatable.

REV A FEB 1981 7-21

Linker Command: LOG

Enables command recording

Linker—8500 MDL A Series Assembler Users
. . ..]

SYNTAX
LOG

EXPLANATION

The LOG command causes all subsequent linker commands to be recorded (logged) in the
linker listing file.

The NOLOG command restores the default setting: commands are not recorded in the linker
listing file.

7-22 REV A FEB 1981

Linker Command: MAP
Linker—8500 MDL A Series Assembler Users

Inctudes map in listing

—

SYNTAX
MAP

EXPLANATION

The MAP command causes the map to be included in the linker listing file. Refer to the
description of the map in the Linker Output subsection earlier in this section.

The NOMAP command restores the default setting: the map is not included in the linker
listing file.

REV A FEB 1981 7-23

Linker Command: NOLOG

Disabies command recording Linker—8500 MDL A Series Assembier Users

SYNTAX

NOLOG

EXPLANATION

The NOLOG command disables the recording (logging) of linker commands in the linker
listing file. Refer to the LOG command description for further information.

7-24 REV A FEB 1981

Linker Command: NOMAP

Linker-—8500 MDL A Series Assembler Users Does not include map in listing

—

SYNTAX

NOMAP

EXPLANATION

The NOMAP command restores the default map setting: the map is not included in the linker
listing file. Refer to the description of the MAP command for further information.

REV A FEB 1981 7-25

Linker Command: TRANSFER

Specifies program start address Linker—8500 MDL A Series Assembler Users
—

SYNTAX
global-symbol
TRANSFER value
PARAMETERS
global-symbol A symbol appearing in the global symbol table.
value A one- to five- digit hexadecimal value that must begin with a digit {O to

9).

EXPLANATION

The TRANSFER command defines the load file transfer address. The transfer address designates
the address of the first instruction to be executed when the program is run. This address is
displayed when the program is loaded into memory, and is used as the default starting address
when the operating system G command is entered without an address parameter.

The transfer address can either be a fixed value (given as a hexadecimal address) or a global
symbol. If a global symbol is designated, the transfer address will be taken from the symbol’s
value after linking.

The transfer address may have been given at assembly time by placing an expression after
the END statement. If a transfer address is selected at assembly time, and the TRANSFER
command is used at link time, the address specified in the TRANSFER command takes
precedence.

EXAMPLES

TRANSFER 400
This linker command designates address 400 (hexadecimal) as the location of the first
instruction to be executed.

TRANSFER MY.START

This command designates the value of the global symbol MY.START as the transfer address.
When linking is completed, the value of MY.START is taken from the global symbol table and
designated as the transfer address.

7-26 REV FEB 1983

Linker—8500 MDL A Series Assembler Users Command Processing Errors

X

Command Processing Errors

If the linker detects an error during command entry, an up-arrow (/) is displayed below the
line, to indicate the approximate location of the error within the command line. A message
defining the error is also displayed. These messages are described in the following
paragraphs.

EXTRANEOUS INFORMATION IGNORED. Extra characters are on a command line that

only requires an instruction (like LOG and MAP). The linker performs the appropriate action
for the command, and ignores the extra characters.

ILLEGAL COMMAND. The command was not recognized.

INDIRECT FILE DEPTH EXCEEDED. A linker @filespec command was found during the
processing of a command file. The command is ignored.

INVALID FILE NAME. The filespec specified in a LIST, LOAD, or LINK command contains
illegal file characters. Refer to the Files section of the 8550 System Users Manual for
information on valid filespecs.

INVALID RANGE SPECIFIED. The range in a LOCATE command is invalid. The ending
address must be greater than the starting address.

SYNTAX ERROR. Statement syntax is invalid. This error occurs when a command does not
precisely match the syntax for that command. For example, unmatched parentheses are
found in the LOCATE command, or an operand is missing after the equals sign in a DEFINE
command.

REV A FEB 1981 7-27

8500 MDL A Series Assembler Users

Section 8
THE LIBRARY GENERATOR

Page
INtrOdUCHION .. o i e e e e i 8-1
LIBGEN INVOCaAtioNottt ettt e ettt et ettt e e e 8-1
Interactive Invocation.......... ... e 8-2
Command File INVOCAtiON i et e e ittt ettt eaa et aeneaaaaaeans 8-4
LIBGEN EXECULION ... ettt et ettt ettt et tenaaaaneann 8-5
[1 =€ =\ VI 0 ¥ o 17 1 8-6
The New Library File ... i i i et ettt et e et 8-6
I L= 1= T o Vo T 8-6
CommMaANd LOg .ottt it e e e e e e 8-6
SyMbDOl LISt . o e e e s 8-7
Summary of Action........... e e e e e et 8-7
[o G Y =TT T =T 8-7
LIBGEN Commandsottt ittt et ettt ettt et teaaanaennenns 8-9
@I ESPEC .ottt e 8-10
DELETE ottt e e e et e e e e e e e e 8-11
EN D ot e e e e 8-12
EX T R A CT ot e e e e e e 8-13
INSE RT .ottt e i e i et e e e et e e e e e et e 8-14
L ST ettt e e e e e 8-16
10 75 PP 8-17
NV B ottt e e e e e e e 8-18
NOLO G . o e e e 8-19
O DL B ottt e e e e e 8-20
REPLACE .o e e e et e 8-21
IHustration

Fig.

No.
8-1 LibGen information flow ... i i e e e 3-5

REV A FEB 1981 8-i

8500 MDL A Series Assembler Users

Section 8
THE LIBRARY GENERATOR

INTRODUCTION

The library generator (LibGen) is a general-purpose utility program used to create and
maintain object module libraries for use with the linker.

LibGen collects assembler-generated object modules into library files. From these library
files, the object modules can be individually accessed by the linker, based on the information
provided in each object module.

This section describes the operations and use of LibGen, and is divided into the following
subsections:

® LibGen invocation. Describes how you invoke LibGen, using the operating system
LIBGEN command.

e LibGen Execution. Describes operations performed by LibGen.
® LibGen Output. Describes the listing file generated by LibGen.

e LibGen Commands. Presents a detailed description of each command used to control
the operation of LibGen.

Some typical uses of LibGen are presented in the Operating Procedures and Programming
Examples sections of this manual.

LIBGEN INVOCATION

You may invoke LibGen by either of the following methods:

® Interactive Invocation. Allows you to contro!l LibGen using a series of commands.
These commands direct LibGen to examine or alter the library by inserting, deleting, or
repiacing object moduies, or copying object moduies to other files.

Interactive invocation is the most common method of invoking LibGen.

® Command File Invocation. Allows you to place commands normally given in interactive
invocation into a file. You can then direct LibGen to process those commands when you
specify only the filespec.

Command file invocation is helpful whenever a particular sequence of LibGen
commands must be used more then once. The sequence of commands can be entered
once in a file, then processed many times by LibGen. If you invoke LibGen from an
operating system command file, then LibGen command file invocation can be used. In
this case, interactive invocation will not suffice, since it requires you to be present
during LibGen’s execution; this is generally not true in normal use of operating system
command files.

These two methods of invocation are described on the following pages.

REV A FEB 1981

LibGen Invocation (interactive) Library Generator—8500 MDL A Series Assembler Users
g _______________________ |

interactive Invocation

SYNTAX
LIBGEN [new-lib] [list] [old-lib]
PARAMETERS
new-lib The filespec of the output library file.
list The filespec of the LibGen listing file or device.
old-lib The filespec of the input library file.

EXPLANATION

In interactive LibGen invocation, you designate the input and output library files, and the
listing file. LibGen will display a prompt character (an asterisk), and wait for you to enter a
series of LibGen commands. (These LibGen commands are described individually later in this
section.) After you have entered the LibGen END command, LibGen processes the files you
have specified.

LibGen can be used to create new library files, modify existing library files, or examine
existing files. To create a new library file, omit the old-lib parameter. To modify an existing
library file, include both the old-lib and new-lib parameters; any unmodified contents of the
old library are copied to the new library. To examine an existing library file, omit the new-lib
parameter.

Filespecs may not exceed 64 characters in length in the invocation line. Filespecs may not
exceed 32 characters in length in interactive LibGen commands. If the complete filespec is
longer, you may use a brief name for a portion of the filespec.

You may optionally specify the filespecs with the NEWLIB, OLDLIB, and LIST commands,

rather than specifying them in the LIBGEN command line. Refer to the LibGen Commands
subsection of this section for information on these commands.

8-2 REV A FEB 1981

Library Generator—8500 MDL A Series Assembler Users LibGen Invocation (interactive)
—

EXAMPLES
LIBGEN MY.LIB LPT SYS.LIB

This invocation of LibGen designates MY.LIB (in the current directory) as the output library
file, the lineprinter (LPT) as the device that will receive the listing, and SYS.LIB as the input
library file. After invocation, LibGen prompts for a sequence of commands.

LIBGEN FP.LIB FP.LBGL

This LibGen invocation creates a new library file, FP.LIB. A listing file FP.LBGL is also
created. Both files reside in the current directory. After this invocation, LibGen prompts for
a series of commands.

LIBGEN,,LPT MY.LIB

When the name of the output library file is omitted, as in this invocation, no output library file
is created. The output library file can be omitted when you only need a listing of the contents
of a library file, or you want to extract one or more library modules to object files.

LIBGEN

In this invocation of LibGen, no input, output, or listing files are specified. LibGen commands
(such as NEWLIB, OLDLIB, and LIST) must be used to specify the appropriate input and
output files.

REV A FEB 1981 8-3

LibGen Invocation (command file) Library Generator—8500 MDL A Series Assembler Users

—

Command File Invocation

SYNTAX
LIBGEN @command-filespec
PARAMETERS
command-filespec The filespec of the file or device from which LibGen will read a series
of commands.
EXPLANATION

This invocation of LibGen is similar to interactive invocation. In this case, however,
commands are read from the designated file or device, instead of from the system terminal.
Commands are read from the specified file until the END command is read, or until the end of
the file is reached (whichever comes first).

EXAMPLES

LIBGEN €LBGC

This invocation line executes the LibGen commands contained in file LBGC in the current
directory.

8-4 REV A FEB 1981

Library Generator—8500 MDL A Series Assembler Users LibGen Execution
L~ -~]

LIBGEN EXECUTION

LibGen performs operations on library files by copying an old library file into a new one.
Changes, as specified by LibGen commands, are made during the copying process. This
process is illustrated in Fig. 8-1.

Object

Modules

INSERT, REPLACE

~\

New Library
Library
Old Library _‘ Generator
OLDLIB (LibGen)
Listing
LIST
DELETE EXTRACT
Object
Mecdules

3573-12

Fig. 8-1. LibGen information flow.

This figure illustrates the information flow into and out of the library generator (LibGen). LibGen takes
information from the oid iibrary and designated object moduies, and produces the new library, listing,
and object files. The LibGen commands that designate the filespecs used for each file are given along
each data path line. The END, LOG and NOLOG commands are not shown, since they do not control the
direction of information flow in LibGen.

Any of the information paths in Fig. 8-1 can be omitted when they are not necessary. For
example, if you are creating a new library, then no old library is needed. If you are examining

iatime~ A

1 i sy A~ 1 At o if. .
an old library, then no new library need be created. !f you do not need a listing, do not specify

i 1V I I
one.

Three of the filespecs may be specified in the LibGen invocation line: the old library file, the
new library file, and the listing file. Other filespecs and operations may be specified only with
the indicated LibGen commands.

REV A FEB 1981 8-5

LibGen Output Library Generator—8500 MDL A Series Assembler Users

[

LibGen does not process each command at the time you enter it, but saves all commands to
be processed in a specific order. LibGen processes commands in this order:

1. INSERT BEFORE
2. EXTRACT

3. DELETE

4. INSERT AFTER

The REPLACE command is processed as a combination of the DELETE and INSERT AFTER
commands.

LIBGEN OUTPUT

LibGen produces three different types of output files: the new library file, a listing file, and
zero or more object files (if specified with the EXTRACT command).

The New Library File

The new library file is the primary product of the library generator. The new library contains
all the object modules from the old library, plus any object modules that were inserted, minus
any object modules that were deleted.

The Listing

The listing summarizes the operations that LibGen has performed. The listing consists of
three parts:

1. a command log;
2. a new library symbol list; and

3. a summary of actions performed by LibGen.
Each of these listing parts is described in detail in the following paragraphs.

Error messages may also be generated by LibGen as a result of mistaken information or
requests. These error messages are described at the end of this subsection.

Command Log

The command log lists each LibGen command used in the current invocation. The command
log is optional; you can enter the LOG command to include the log in the listing, or the
NOLOG command to omit the log. When you specify neither of these commands, the
command log is included by default.

8-6 REV A FEB 1981

Library Generator—8500 MDL A Series Assembler Users LibGen Output
_

Symbol List

In this part of the listing, LibGen records the names of all modules contained in the output
library, and the global symbols contained within each module.

Global symbols within each module are divided into three categories:

@ Section names: The name of a SECTION, COMMON, or RESERVE contained within the
module.

e Entry points: An address (within the most-recently-listed section) declared global with
the assembler GLOBAL directive.

e Global symbols: A scalar value declared giobal with the assembler GLOBAL directive.

These symbols are preceded in the listing with either a (S), (E), or (G), indicating section
name, entry point, or global symbol, respectively.

Note that these global symbols are the factors that determine whether or not a module will
be included at link time. For example, assume that module X in the library has a section
named “P”, an entry point named “P1”, and a global symbol named “P9”. At link time, if any
one of the symbols "P”, "P1”, or "P9” has been referenced (through an unbound GLOBAL
reference), and this library had been given as linker input, then module X would be included
as if it were one of the normal linker object modules.

Summary of Action

The summary of action describes the operations LibGen has performed during this execution.
LibGen actions include:

® generating a new library,

® deleting a module from the library,

® inserting a moduie into the library, and

® extracting a library module to an object file.

Error Messages
Error messages are issued wherever necessary. Two types of error messages can appear:
1. Non-Fatal Errors (N): LibGen cannot process the command as entered, due to syntax

errors, or improper file/module specifications. Processing will continue, but the result
may not be exactly what you had expected.

o

Fatal Errors {F): LibGen has encountered a major problem that

processing. The error message is displayed, and control returns to the operating
system.

All errors cause a message to be displayed on the system terminal. The error message will
also appear in the LibGen listing file, if one is being generated.

REV A FEB 1981 8-7

LibGen Output Library Generator—8500 MDL A Series Assembler Users
L

In the following list, each error message is indicated as being a non-fatal error (N), or a fatal
error (F).

CAN NOT FIND END BLOCK FOR MODULE IN FILE filespec. (F) filespec is not a valid
object file. Verify that you have specified the correct filespecs in your INSERT and REPLACE
commands.

CAN NOT FIND END BLOCK FOR MODULE modname OF LIBRARY oldlib. (F) oldlib is
not a valid library.

comtype DATA STRUCTURE OVERFLOW. (F) Too many comtype (INSERT, DELETE, or
EXTRACT) commands were specified in the current LibGen invocation. LibGen allows a
maximum of 100 commands of any given type.

COULD NOT FIND MODULE modname IN oldlib, newmod INSERTED AT END OF
newlib. (N) The BEFORE/AFTER parameter of an INSERT command specified a library
module not present in the old library. The module will be added to the end of the library.

FILE filespec IS NOT AN OBJECT FILE. (F) filespec is not a valid object file. Verify that you
have specified the correct filespecs in your INSERT and REPLACE commands.

filespec 170 ERROR #nn. (F) The operating system has reported an I/0 error during the
access of the specified file. The error number is the service cail (SVC) status byte value in
hexadecimal. Refer to the Error Messages section of the 8550 System Users Manual for a
description of the error and for possible actions to take to correct the situation.

ILLEGAL COMMAND. (N) The command specified is not a valid LibGen command. Refer to
the list of valid LibGen Commands later in this section. The command line is ignored.

INDIRECT FILE DEPTH EXCEEDED. (N) An @filespec command was read from a
command file. Command files may not invoke other command files. The command is ignored.

INVALID FILE NAME. (N) A filespec contains an invalid character. The invalid character(s)
are deleted, and processing continues.

INVALID OBJECT FORMAT FOR FILE filespec LOCATION = nnnn. (F) filespec is not a
valid object file. Verify that you have specifed the correct filenames in your INSERT and
REPLACE commands.

MODULE(S) NOT FOUND IN oidlib. (N) The modules specified in an EXTRACT or DELETE
command were not found in the old library. The command is ignored.

8-8 REV A FEB 1981

Library Generator—8500 MDL A Series Assembler Users LibGen Commands
—

NO OLD LIBRARY GIVEN, filespec INSERTED AT END OF newlib. (N) The
BEFORE/AFTER parameter of an INSERT command specified a library module, but no old
library was given. The module will be added to the end of the new library.

oldlib NOT A LIBRARY. (F) oldlib is not a library file. Verify that you have specified the
proper filespec in the LibGen invocation line, or the parameter of an OLDLIB command.

SYNTAX ERROR. (N) The command does not conform to the proper syntax for that
command. The command line is ignored.

UNABLE TO ASSIGN filespec. (N) filespec cannot be located. Verify that you have entered
the proper filespec.

WARNING. DUPLICATE MODULE NAME: modname. (N) Two or more modules within the
library file have the name modname. This condition does not affect the performance of the
linker when selecting modules, but will make future modification and maintenence of the
library difficult. When creating a library, be sure to give each object module a unique name
with the assembler NAME directive.

LIBGEN COMMANDS

LibGen commands allow you to control the operations that LibGen will perform. When you
invoke LibGen interactively, you must enter one (and only one) command each time LibGen
prompts with an asterisk. When you invoke LibGen with a command file, each line of the
command file should contain one LibGen command.

Whenever you enter a series of LibGen commands, the iast command must be the END
command. If you invoke LibGen with a command file, you may omit the END command.

in the foliowing command descriptions, the same conventions are used as described in the
Assembler Introduction section of this manual. Additionally, the following abbreviation
convention is used.

Most commands can be entered either of two ways:
1. using the full name of the command (INSERT), or
2. using the designated abbreviation (I).

The designated abbreviation for each command is indicated by the underlined portion of the
command in the syntax description. If all letters in the command are underlined, then no
abbreviation is permitted. Partial abbreviations are never permitted.

All filespecs in interactive LibGen commands are limited to 32 characters in length. If the
complete filespec is longer than 32 characters, you may use a brief name for a portion of the
filespec.

DOS/50 allows any printing character (except the space) to appear in a filespec. The library
generator, however, allows only the printing characters from ! (ASCHl 21H) to_(ASCIl 6FH),
with the exception of plus, comma, and minus (ASCH 2BH, 2CH, and 2DH). In particular,
lowercase letters may not appear in LibGen filespecs. Before invoking the LibGen, you may
use the appropriate DOS/50 commands to alter any filespecs, as necessary.

REV A FEB 1981 8-9

LibGen Command: @filespec

Invokes a LibGen command file Library Generator—8500 MDL A Series Assembler Users
—

SYNTAX
@filespec
PARAMETERS
filespec The filespec of the command file containing a sequence of LibGen

commands.

EXPLANATION

This command invokes filespec as a command file. The command file contains a series of
LibGen commands. Commands are read from the file and processed as if you had entered
them from the system terminal, until the END command is read or the end of file is reached.
Commands are echoed on the system terminal as they are processed. When the end of the
command file is reached, you will be prompted for additional LibGen commands. Nested
command files are not allowed: a command file may not invoke another command file.

EXAMPLES

@ADD.LBGC

This LibGen command invokes command file ADD.LBGC (in the current directory). Additional
LibGen commands will be read from file ADD.LBGC and processed, until the end of file is

A~ o~ A~ el A CAIFY ;e e e AL tale AN 1IN o L
reached, or unti! an END command within ADD.LBGC is processea.

8-10 REV A FEB 1981

LibGen Command: DELETE

Library Generator—8500 MDL A Series Assembler Users Deletes library modules
—

SYNTAX
DELETE module-name [,module-name] . . .
PARAMETERS
module-name The name of an input library module that you want to delete from the

output library.

EXPLANATION
The DELETE command prevents the designated moduies from being copied from the old
library file into the new library file.

If two or more modules with the designated name exist, every module with that name is
deleted.

EXAMPLES

ELETE MYMCD

o

This DELETE command removes MYMOD from the output library.

DELETE IO0.O0OPS, FPOINT, RANDOM$$

This DELETE command removes modules 10.0PS, FPOINT, and RANDOMS$ from the output
library.

REV A FEB 1981 8-11

LibGen Command: END

Terminates command entry Library Generator—8500 MDL A Series Assembler Users
—

SYNTAX

m
v/

EXPLANATION

The END command signals the end of the command sequence. You enter this command to
start the library generation process after you have completed entering all other LibGen
commands.

This command must be used in interactive invocation, but it can be omitted for command file
invocation. If END is omitted, LibGen begins the library generation process when the end of
the command file is reached.

8-12 REV A FEB 1981

LibGen Command: EXTRACT

Copies module to object file

Library Generator—8500 MDL A Series Assembler Users

SYNTAX
EXTRACT module-name TO filespec
PARAMETERS
module-name The name of a library module to be copied to a file.
filespec The filespec of the file that is to receive copy of the library object

module.

EXPLANATION

The EXTRACT command copies the designated library object module to a file. The designated
object module remains in the library (unless it has also been designated in a DELETE
command). If the specified file already exists, it is replaced by the designated library object
module; the old contents are lost without warning.

EXAMPLES

EXTRACT FP$MULT TO FPMULT.OBJ
This EXTRACT command copies the library module FP$MULT to the file FPMULT.OBJ.

EXTRACT I0.MOD TO I0.0BJ

This EXTRACT command copies the library module 10.MOD to the file 10.0BJ in the current
directory.

REV A FEB 1981 8-13

LibGen Command: INSERT

Adds new modules to library Library Generator—8500 MDL A Series Assembier Users

SYNTAX

BEFORE lib-module-name
INSERT filespec [,filespec] . . .|AFTER lib-module-name

PARAMETERS

filespec The filespec of an object file containing one of the object modules to be
inserted.

lib-module-name The name of an object module already present in the library.

EXPLANATION

The INSERT command adds new object modules into the library. Each specified object file
contains one object module. These modules are placed into the new library file according to
the BEFORE/AFTER parameter (or its absence). If more than one object file is specified, all
designated object modules are placed together in the given order, with the entire group
located according to the BEFORE/AFTER parameter.

The BEFORE/AFTER parameter controls the placement of the module(s) in the following
manner:

e |f the BEFORE/AFTER parameter is omitted, the object module(s) are placed at the
beginning of the library.

® if ihe BEFORE parameter is given, the object module(s) are placed immediately be
the designated library module (lib-module-name).

¢ |f the AFTER parameter is given, the object module(s) are placed immediately after the
designated library module (lib-module-name).

If the BEFORE/AFTER parameter is entered, but the designated library module cannot be

found in the library, an error is generated, and the object module(s) are placed at the end of
the library.

8-14 REV A FEB 1981

LibGen Command: INSERT

Library Generator—8500 MDL A Series Assembler Users Adds new modules to library

EXAMPLES

INSERT I0.0BJ
This INSERT command adds the contents of file 10.0BJ (located in the current directory) to
the beginning of the library.

INSERT FPADD.OBJ, FPSUB.OBJ, FPMULT.OBJ
This INSERT command adds the contents of files FFPADD.OBJ, FPSUB.OBJ and FPMULT.OBJ
to the beginning of the library

INSERT FPDIV.OBJ BEFORE FP$MULT

This INSERT command adds the contents of file FPDIV.OBJ to the library file. The object
module contained in FPDIV.OBJ is placed immediately before the library object module
named FP$MULT.

INSERT FPCLR.OBJ, FPROT.OBJ, FPSIGN.OBJ AFTER FP$ADD

This INSERT command adds the contents of object files FPROT.OBJ, FPROT.OBJ, and
FPSIGN.OBJ immediately after the library module FP$SADD.

REV A FEB 1981 : : 8-15

LibGen Command: LIST

Specifies iisting filespec Library Generator—8500 MDL A Series Assembler Users
L e

SYNTAX
LIST filespec
PARAMETERS
filespec The filespec of the LibGen listing file or device.
EXPLANATION

The LIST command specifies the file or device for the LibGen listing. Refer to the LibGen
Output subsection of this section for information on the contents of the listing.

The listing file may also be specified by the second parameter of the LIBGEN command
during interactive invocation.

EXAMPLES

LIST LPT
This LIST command designates the line printer (LPT) to receive the LibGen listing.

LIST MY.LBGL

The LIST command daci
the LISt commanag des!

LibGen listing.

anatac fi
ghates i

e MY.

8-16 REV A FEB 1981

LibGen Command: LOG

Library Generator—8500 MDL A Series Assembler Users Enables command recording
—

SYNTAX

LOG

EXPLANATION

The LOG command causes all subsequent LibGen commands to be recorded (logged) in the
LibGen listing file. Each command, as entered, appears in a section of the LibGen listing file
for future reference.

The NOLOG command disables the recording of LibGen commands in the LibGen listing file.

The default setting is logging enabled (identical to the effect of the LOG command).

REV A FEB 1981 8-17

LibGen Command: NEWLIB

Specifies output library Library Generator—8500 MDL A Series Assembler Users

! !

SYNTAX
NEWLIB filespec
PARAMETERS
filespec The filespec of the new library file.

EXPLANATION

The NEWLIB command designates the output file that is to receive the updated library. If the
specified file currently exists, that file is replaced (without warning) with the new library file.
If more than one NEWLIB command is entered in a command sequence, or NEWLIB
commands are specified during an interactive invocation, only the file specified in the last
NEWLIB command processed is used as the output library file.

When LibGen is invoked with a command file, the NEWLIB command is essential for
specifying the output library file. However, when LibGen is invoked interactively, the output
library file may be specified either as the first parameter of the operating system LIBGEN
command, or as the parameter of a LibGen NEWLIB command.

EXAMPLES

NEWL1IB FPPACK.LIB
This NEWLIB command designates FPPACK.LIB (in the current directory) as the output library
fite.

8-18 REV A FEB 1981

LibGen Command: NOLOG

Library Generator—8500 MDL A Series Assembler Users Disables command recording
—

SYNTAX

NOLOG

EXPLANATION
The NOLOG command disables the recording (logging) of LibGen commands in the LibGen
listing file. Refer to the LOG command for further information.

The default setting is logging enabled (identical to the effect of the LOG command).

REV A FEB 1981 8-19

LibGen Command: OLDLIB

Specifies input library Library Generator—8500 MDL A Series Assembler Users

“

SYNTAX
OLDLIB filespec
PARAMETERS
filespec The filespec of the old library file.

EXPLANATION

The OLDLIB command designates the input file that contains the source library. If more than
one OLDLIB command is entered in a command sequence, or OLDLIB commands are
specified during an interactive invocation, only the file specified in the last OLDLIB command
processed is used as the input library file.

When LibGen is invoked with a command file, the OLDLIB command is essential for
specifying the input library file. However, when LibGen is invoked interactively, the input
library file may be specified either as the third parameter after the operating system LIBGEN
command, or as the parameter of a LibGen OLDLIB command.

EXAMPLES

(=]

LDLIB FPPACK

1

IB

This OLDLIB command designates FPPACK.LIB (in the current directory) as the input library
file.

8-20 REV A FEB 1981

LibGen Command: REPLACE

Replaces old module with new module

Library Generator—8500 MDL A Series Assembler Users

SYNTAX

REPLACE lib-module-name BY filespec

PARAMETERS

lib-module-name The name of an object module already present in the library.

filespec The filespec of a file containing an object module that will replace lib-
module-name.

EXPLANATION

The REPLACE command replaces the designated library module with the contents of an
object file. The old library module is deleted (as if the appropriate DELETE command were
entered), and the object module contained within the object file is inserted in its place (as if
the ‘appropriate INSERT AFTER command were entered).

If more than one library module has the specified module name, then all modules with that

name are deleted, and the new object module replaces the first library module with that
name.

If the specified file does not exist, the library module is deleted and an error occurs.

EXAMPLES

REPLACE FP$ADD BY NEWADD.OBJ

This REPLACE command deletes module FP$ADD from the library and inserts the contents of
object file NEWADD.OBJ in its place. in its place.

REV A FEB 1981 8-21

8500 MDL A Series Assembler Users

Section 9
PROGRAMMING EXAMPLES

Page

Introduction........ ...l e 9-1 Save-and-Restore Macro.............................. 9-36
Using a Simple Assembler Macro 92 RESTORE Macro 111 L o
Defining the Macro.............ooiiiiiiiiiiii .. 9-3 .

Sample INVOCAtIONSvvinti it iiiae ey 9-6 Sample INvocationscoovhiinii 9-38
Creating and Using a Subroutine Library 9-6 I(:‘:ondltlonal Assembly PP B R REEETTTRPRPTRY 9-38
The ADD MOAUIE . . eeeeeeeeeeeeeeeeeeeaeenes g7 Processorindependent Programming.................... 9-39
The SUBTRACT MoGUIE. ...\ . oeeeeeeeeieeeennes g.g Conditional Assembly in Macros 9-39
Entering the Modules..........o iiiiat, 9-10 Assembly Based on Relative Memory Locations 9-40
Assembling the Modules............................... 9-12 Using the '@’ Construct within Macros 9-41
Creating the Library o i, 9-14 Delay Loop Macro.........coooiiiiiiii i, 9-41
Using the Add Module from a Program................ 9-15 Macro Invocationo i i 9-42
Using the Subtract Module from a Program 9-20 The Assembler INCLUDE Directive 9.42
DOS/50 SVC Generationovuviirinnnennnnnn 9-27 Including Constant Declarations 9-42
Creating Service Request Blocks 9-27 Including COMMON Declarations....................... 9-43

The SRB MacCro . .vvereeeie e eieeiiaaans 9-28 The INCLUDE Directive in Macroscoouuu... 9-44

Explanation of the SRB Macro....................... 9-28 Authorship and Copyright Notices for Listings.......... 9-44

Sample Invocations of the SRB Macro............... 9-31
Generating Service Calls........... ..ol 9-31 . ILLUSTRATIONS

The SVC MECIO .. .vvt e eee et aieeeaeeaaeens 9-32 Fig.

Explanation of the SVC Macro....................... 9-32 No.

Sample Invocations of the SVC Macro............... 9-32 9-1 Defining a macro as part of the source file 9-3
Creating Constant Values..................ccoo.n. 9-32 9-2 Defining a macro with an INCLUDE directive 9-4
The CONSTANT MAGTO .. oveevneeneeneeneenaeenaennss 9-33 9-3 Defining a macro in a concatenated prefix file 9-5
The VARIABLE MECTOeoverninaeenaiaeannnen 9-3¢ 94 Linking the add program to the library.............. 9-20
Macro IRVOCALION ...\ v ettt e e eeeinnns 9-35 9-5 Linking the subtract program to the library 8-26

REV A FEB 1981 9-i

8500 MDL A Series Assembler Users

Section 9

PROGRAMMING EXAMPLES

INTRODUCTION

NOTE
This section supports DOS/50 Version 1 and DOS/50 Version 2.

This section contains examples of some typical uses of the assembler, linker, and library
generator. These examples range from a simple macro invocation, to the creation and use of
a complex floating-point library.

These examples assume that you have some familiarity with assembly language
programming, and with the Tektronix Assembler, Linker, and Library Generator. You can use
these examples as “application notes” for the assembler, linker, and library generator’s
features. These examples are not intended to be used during your initial familiarization with
these subsystems.

The following examples are included in this section:

REV FEB 1983

e Using a simple assembler macro. This example creates a small, general-purpose
assembler macro, and shows some typical ways you can create, define, and invoke a
macro.

® Creating and using a subroutine library. This example shows how you can build a
library (a skeleton floating-point package), and then use parts of that library at a later
time. Relevant parts of the assembler, linker, and library generator are illustrated.

® DOS/50 SVC generation. This example shows how the macro and conditional
assembly features of the assembler can make it easier to use SVCs (service calls) under
DOS/50.

® Creating constant values. This example shows how to use an assembler macro to
declare a constant value in a separate assembler section. You could use this technique
to keep your instructions, fixed data values, and variable data values separate, so that
you could eventually place your program into ROM.

® Save-and-restore macro. This example shows a typical application of an intelligent
macro to perform a common programming operation: saving registers on the stack and
later restoring the registers from the stack.

® Conditional agssembly. This example suggests ways of using the IF assembler directive
to include or omit various program segments, based on various conditions.

® Using the ‘@’ construct within macros. This exampie shows typicai uses of the ‘@’
construct within macros.

® The assembler INCLUDE directive. This example shows some typical uses of the
INCLUDE directive, such as providing common constant, COMMON, or macro
declarations. It also shows how to provide a copyright or authorship notice for your listings.

9-1

Using a Simple Assembler Macro Programming Examples—8500 MDL A Series Assembler Users

USING A SIMPLE ASSEMBLER MACRO

This example illustrates the use of a small, general-purpose assembler macro. The macro
generates multiple copies of an assembler statement.

First, the macro is defined. Then, the example shows alternative ways of defining the macro,
using various assembler features. Finally, a few sample invocations of the macro are
presented.

The macro itself is simple. The macro is invoked with two parameters: an integer and an
assembler statement. The first parameter designates how many copies to generate. For
example, if the macro is given the two parameters of 16 and " WORD 0", the macro will
generate 16 lines of ” WORD O”. Other invocations are given later in this example.

The COPY Macro

MACRO CoPY ; line 1
COPY$ SET 1 ; line 2
REPEAT COPY$<='1" ; line 3
i ; line U4
COPY$ SET COPY$+1 ; line 5
ENDR ; line 6
ENDM ; line 7

The macro is named COPY (in line 1), to remind you of its function: generate multiple copies
of a designated assembler statement. Generally, you should give a macro a name that
reflects its purpose.

Line 2 sets the assembler variable COPY$ to 1. This variable (COPYS$) is used later in the
body of the macro to keep track of the number of copies generated.

Line 3 begins a REPEAT loop. The REPEAT assembler directive causes all statements
between this directive and the matching ENDR directive (line 6) to be repeatedly assembled.
The assembler stops assembling these statements when the condition of the REPEAT loop
(the first operand in the REPEAT direciive) is faise (zero).

For this macro, the condition expression is zero when the value of the assembler variable
COPYS$ is not less than or equal to (<=) the first parameter ('1’) specified when COPY is
invoked. In other words, the two statements within the REPEAT loop are repeatedly
assembled as long as the assembler variable COPY$ is not greater than the first parameter.

Line 4 is a placeholder for the second parameter specified in the macro invocation line.
When the assembler processes this statement, it replaces the ‘2’ with the the assembler
statement that is to be copied.

Line 5 increments the "number-of-copies” counter, COPY$. This counter is incremented

once each time the statements within the REPEAT loop are assembled, to keep track of the
number of copies generated.

9-2 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Using a Simple Assembler Macro

—

Line 6 terminates the REPEAT loop. As long as the condition of the REPEAT loop is non-zero
(true), the assembler will return to the REPEAT statement for another pass through the
REPEAT loop. When the condition is zero (false), the assembler proceeds with assembly
following the ENDR statement.

Line 7 terminates the definition of macro COPYS$.

Defining the Macro
The macro can be defined in three different ways:
1. The macro can be placed at the beginning of the assembly source file that needs to
use the macro.
2. The macro can be placed in a separate file, and brought into the source file with an
INCLUDE assembler directive.

3. The macro can be placed in a separate file, and concatenated to the beginning of the
source file when you specify the operating system ASM command.

These alternatives are described in the following paragraphs.

Defining the Macro As Part of Source File

If the macro is needed for only one assembler source file, this method of definition is easiest.
Simply place the lines forming the macro definition somewhere in your source file before the
first invocation of the macro. A typical place would be somewhere near the beginning of the
file.

This method is illustrated in Fig. 9-1.

Assembiy Source Program

- Macro definition

Macro invocation

Macro invocation

Macro invocation

3575-13

Fig. 9-1. Defining a macro as part of the source file.

In this method, the macro is defined once, near the beginning of the file. The macro may then be
invoked as needed.

REV A FEB 1981 9-3

Using a Simple Assembler Macro Programming Examples—8500 MDL A Series Assembler Users

L RN,

Defining the Macro Using the INCLUDE Directive

If the same macro is needed in several assembler source files, you can place the macro in a
separate file, then refer to the filespec with an assembler INCLUDE directive.

For example, you can place the lines defining the macro into a file named CPYM.ASM. Then,
you'd place the INCLUDE statement in your assembler source file (before your first invocation
of the macro):
Label Operation Operand Comment
INCLUDE "CPYM.ASM" ; Obtain COPY macro definition

When the assembler processes this statement, it will examine the contents of file
CPYM.ASM, which defines the macro COPY. This method is illustrated in Fig. 9-2.

Source Program PROG.ASM

Macro file CPYM.ASM

INCLUDE "CPYM.ASM” S — Definition of COPY

Macro invocation

Macro invocation

Macro invocation

3575-14

Fig. 9-2. Defining a macro with an INCLUDE directive.

In this method, the contents of file CPYM.ASM are brought into the assembler source file PROG.ASM,
at the point indicated by the INCLUDE directive. This way, the macro is defined before its first
invocation.

Defining the Macro in a Concatenated Prefix File
This definition method is much like the INCLUDE method. However, in this case, the filespec

containing the macro definition is not specified by an assembler statement, but is specified
at the time you enter the ASM command.

Let’s assume again that the macro resides in a file named CPYM.ASM, and that your source
program is named PROG.ASM. To assemble your source program, you enter the following
operating system command line:

> ASM PROCG.0OBJ PROG.LOCAD CPYM.ASM PRCG.ASM
. —
Prefix file

9-4 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Using a Simple Assembler Macro

L -

Notice what happens: the file CPYM.ASM is effectively “glued” to the front of the source
program PROG.ASM by this operating system ASM command line. The assembler will read
and process the contents of CPYM.ASM before processing the statements of PROG.ASM,
thus ensuring that the COPY macro will be defined before its first use. This process is
iltustrated in Fig. 9-3.

Macro file (CPYM.ASM)

Definition of COPY

|

Source program (PROG.ASM)

|

Macro invocation

Macro invocation

Macro invocation

3575-15

Fig. 9-3. Defining a macro in a concatenated prefix file.

In this method, the macro definition file (CPYM.ASM) is attached by the assembler to the beginning of
the main program (PROG.ASM).

This method has iwo major advaniages:

1. You specify the name of the macro definition file when you assemble the file, instead
of when you edit the file. Sometimes you may not know the complete filespec of the
definition file when you're entering the program. This method allows you to change
the name or volume without editing the file.

2. Your macros are guaranteed to have been defined before their first use; the assembler
processes the prefix file before it assembles any statements in the main part of the
program.

This method has two disadvantages that you should be aware of:

file. This disadvantage can be minimized if you create an operating system command

file containing the assembler invccation line.

1. The name of the macro definition file must be specified each time you assemble the

2. The line numbers in the assembler listing are incremented for any assembled line;
therefore, the line number of an error in the listing will not necessarily compare
correctly with the line number of the main program source statements. In our
example, an error appearing on line 50 of the assembler listing would actually refer to
line 43 (in our example) of PROG.ASM, because the first seven lines of the listing have
been obtained from the file CPYM.ASM.

REV A FEB 1981 9-5

Creating and Using a Subroutine Library Programming Exammples—8500 MDL A Series Assembler Users

- -

Sample Invocations of the COPY Macro

Now that COPY has been defined (by one of the three methods mentioned above), you may
use the macro in your program. For example, suppose that you need 20 (decimal) consecutive
constant-value bytes—each byte containing the value 47 (decimal). Without the aid of this
macro, you would need to enter the BYTE directive with 20 operands (each being the value
47), or 20 BYTE directives, each with an operand of 47, or some combination of the above
entries. With the aid of the macro, however, you only need to write one assembler statement:

COPY 20,[BYTE 471

Notice that the second parameter is enclosed in matching square brackets. These brackets
are not part of the parameter, but indicate the part of the statement line that belongs to the
parameter. Without the brackets, the essential leading space (before the word BYTE) would
have been discarded, and the assembler statements (generated within the macro) would
have been in error.

Another example of a need for multiple copies of an assembler statement can be taken from
the microprocessor instruction set. An 8080A/8085A RLC instruction rotates the
accumulator (A register) one bit-position to the left. You may need to rotate the accumulator
four bit-positions to the left; the 8080A/8085A does not provide this as a primitive
instruction. Ordinarily, you would have to generate four consecutive RLC instructions; with
the COPY macro, you can enter these four statements with one line:

COPY 4,[RLC]

Again, the brackets surround the second parameter to retain the required leading space.

CREATING AND USING A SUBROUTINE LIBRARY

This example shows you how to create a library using the assembler and library generator,
and how to write programs that use selected modules from the library.

The exampie deveiops a poriion of a fioating-point package. The fioating-point pac Kage uses
processor instructions to manipulate floating-point numbers like 10000. or 7 (3.14159...). For
this example, assume that any floating-point number can be stored in eight consecutive
bytes. (The method of storage is not relevant to this example.)

To keep things simple, only two primitive floating-point operations are shown in this
example: addition and subtraction. Modules that perform these two operations are the
nucleus of the library. Later, other modules, such as multiplication, could be added to the
library.

In this exaniple, the addition and subtraction modules are written as subroutines. They pass

and return data using a predefined COMMON section: a floating-point accumulator. (See the
Add Module and Subtract Module discussions.)

9-6 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

0

This example, then, consists of seven major tasks:
1. The library ADD module is presented.
2. The library SUBTRACT module is presented.
3. The modules are entered and assembled.
a4

. The library generator is invoked to create the floating-point library from the two object
modules.

o

A sample mainline program using the library ADD module is presented.
6. The sample mainline program is entered, assembled, and linked.

7. A parallel mainline program using the library SUBTRACT module is presented,
entered, assembled, and linked.

The Add Moduie

The following assembler source statements present a “skeleton” of the library ADD module.
The actual microprocessor instructions to perform the addition are not included, but are
represented by assembler BLOCK directives of comparable length. A line-by-line description
of the source module follows the listing.

The ADD Module Statements

LIST DBG ; line 1
NAME FP$ADD ; line 2
GLOBAL FP.ADD, FP.ADZ2 ; line 3
COMMON FP$ACC ; line 4
SRC1 BLOCK 8 ; line 5
SRC2 BLOCK 8 ; line 6
DEST BLOCK 8 ; line 7
SECTION FP_ADD ; line 8
FP.ADD BLOCK 40 ; line 9
FP.AD2 BLOCK 350 ; line 10
END ; line 11

Explanation of the ADD Module

Line 1 enables the linker to generate a listing of all internal (non-global) symbols with their
relocated values. Although you wouldn’t normally enable this feature in a library module, you
can use it here to observe the normally invisible linker operations.

Line 2 declares the name of the object moduie generated by the assembier from these source
statements. This name is essential in ail LibGen references to this particular library element.
The name (FPSADD) indicates the module's function (floating-point addition).

Line 3 designates FP.ADD and FP.AD2 as global symbols. Both of these symbols are defined

in this module. These symbols are entry points into the subroutine; they are used by other
modules to select this library module at link time.

REV A FEB 1981 9-7

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users
e

Lines 4 through 7 define the structure of the floating-point accumulator. This COMMON
section is named FP$ACC (floating-point accumulator). The accumulator provides space for
three floating-point numbers: two operands (SRC1 and SRC2) and the result (DEST).

Lines 8 through 10 define the executable-instruction section named FP_ ADD. This assembler
section contains the instructions that perform the addition. The BLOCK directives represent the
approximate number of bytes consumed by the instructions. Two entry points are defined in this
section: FP.ADD and FP.AD2. (See the following discussion.)

Line 11 designates the end of this assembler module.

Entry Points
This library module defines two entry points:

® Your program can call this subroutine at FP.ADD to add SCR1 to DEST, leaving the resultin
DEST. This entry point is useful when you are maintaining a running total. To simplify the
discussion, assume that the routine beginning at FP.ADD simply copies the contents of
DEST to SCR2, then falls through to the routine at FP.AD2.

® Your program can call this subroutine at FP.AD2 to add SRC1 to SRC2, leaving the

result in DEST. This entry point is used when you do not wish to incur the additional
overhead of the first entry point.

The Subtract Module

The SUBTRACT module, as represented here, is very similar to the ADD module. The
assembler statements present a “skeleton” of this SUBTRACT module. A line-by-line
description of the source module follows the listing.

LIST DBG ; line 1
NAME FP$SUB ; line 2
GLOBAL FP.SUB, FP.SU2 ; line 3
GLOBAL FP.AD2 ; line U
COMMON FP$ACC ; line 5
SORC1 BLOCK 8 ; line 6
SORC2 BLOCK 8 ; line 7
DST BLOCK 8 ; line 8
SECTION FP SUB ; line ¢
FP.SUB BLOCK 70~ ; line 10
FP.SU2 BLOCK 30 ; line 11
CALL FP.AD2 ; line 12
BLOCK 35 ; line 13
END ; line 14

9-8 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

X

Explanation of the SUBTRACT Module

Line 1 enables the linker to generate a listing of all internal (non-global) symbols with their
relocated values.

Line 2 declares the name of the object module generated by the assembler from these source
statements: FP$SUB (floating-point subtraction).

Line 3 designates FP.SUB and FP.SU2 as global symbols. These address symbols form entry
points into this routine.

Line 4 declares FP.AD2 as a global symbol. Unlike the other global symbols, FP.AD2 is
defined in another module (the ADD module). When the SUBTRACT modaule is linked into a
program, the linker notes the FP.AD2 symbol, and attempts to locate a definition for it in
another module.

Lines 5 through 8 define the structure of the floating-point accumulator. The COMMON
section is named FP$ACC, as before. However, the components of FP$ACC are named
differently in this module: the operands are named SORC1 and SORC2Z, while the destination
is named DST. This module illustrates how two modules can refer to the same portions of
memory with independently selected names.

Lines 9 through 13 define the executable-instruction section named FPSUB. This assembler
section contains the instructions that perform the subtraction. Two entry points are defined
here: FP.SUB and FP.SU2. (See the following discussion.)

Line 14 designates the end of this assembler routine.

Entry Points
This library moduie defines two entry points:

® Your program can call this subroutine at FP.SUB to subtract SORC1 from DST, leaving
the result in DST.

® Your program can call the subroutine at FP.SU2 to subtract SORC1 from SORC2,
leaving the result in DST.

The routine starting at FP.SUB copies the contents of DST to SORC2, then falls through to
FP.SU2. The routine beginning at FP.SU2 changes the sign of SORC1, and calls FP.AD2 to
complete the subtraction. (The 8080A/8085A instruction at line 12 is a call to a subroutine,
and returns to the address following the instruction.)

REV A FEB 1981 9-9

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users

Y

Entering the Modules

You may use the operating system Editor to enter these two modules into their respective
assembler source files. The ADD module will be placed in a file named FPA.ASM, and the
SUBTRACT module will be placed in a file named FPS.ASM. The underlined entries indicate
what you enter.

[Create the addition source file with the editor.]
> EDIT FPA.ASM

% EDIT VERSION x.x
¥%¥ NEW FILE

[Define a visible tab character, and enter the assembly statements.]
*XTABS ON:TAB \:INPUT
INPUT:

\LIST\DBG

\NAME\FP$ADD
\GLOBAL\FP.ADD, FP.AD2
\COMMON\FP$ACC

T\BLOCK

SRC2\BLOCK\8
DEST\BLOCK\§
\SECTION\FP ADD
FP.ADD\BLOCK\LO
FP.AD2\BLOCK\350

\END
[Display the statements with the tab characters expanded to spaces.]
¥TYPE B-E

LIST DBG

NAME FP$ADD
GLOBAL FP.ADD, FP.AD?
COMMON FP$ACC

SRC1 BLOCK 8

SRC2 BLOCK 8

DEST BLOCK 8
SECTION FP_ADD

FP.ADD BLOCK 40

FP.AD2 BLOCK 350
END

*FILE

¥¥ END OF TEXT

*% EQF

9-10 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

50—

[Now follow the same procedure for the subtraction source file.]
> EDIT FPS.ASM

¥¥ EDIT VERSION x.x
¥* NEW FILE
*XTABS ON:TAB \:INPUT
INPUT:
\LIST\DBG
\NAME\FP$3SUB
\GLOBAL\FP.SUB, FP.3SU2
\GLOBAL\FP.AD2

\NCOMMONNFP$ACC

SORCT\BLOCK\8
SORC2\BLOCK\8
DST\BLOCK\8
N\SECTION\FP SUB
FP.SUB\BLOCK\T0
FP.SU2\BLOCK\30
NCALLN\FP.AD?
\BLOCK\35

\END

*TYPE B-E
— LIST DBG
NAME FP$SUB
GLOBAL FP.SUB, FP.SU2
GLOBAL FP.AD2
COMMON FP$ACC
SORC1 BLOCK 8
SORC2 BLOCK 8
DST BLOCK 8
SECTION FP_SUB
FP.SUB BLOCK 70
FP.SU2 BLOCK 30
CALL FP.AD2
BLOCK 35
END
*FILE
*¥END OF TEXT
*¥EOF

REV A FEB 1981 9-11

Creating and Using a Subroutine Library

Assembling the Modules

Now that you've entered the programs, you may assemble them to generate the necessary
object modules for the library.

[Assemble the source FPA.ASM into the object FPA.OBdJ.

output

> ASM FPA.OBJ CONO FPA.ASM

Tektronix
¥%%%¥ DPass 2

Tektronix

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011

0000
0008
06010

0008
0008
0008

0000
0028

0028
015E

Tektronix

Scalars
A e 0007
D —===-—- 0002
L - 0005
SP —==-- 0006

FP$ACC Common (0018)

DEST --- 0010

o
ry

11 Source Lines
11 Source Lines

>>> No
>>> No
¥ASM* EOJ

[Now do the same for the subtract module:

SRC1
SRC2
DEST

FP.ADD
FP.AD2

8080/8085 ASM Vx.x

11 Assembled Lines
11 Assembled Lines

8080/8085 ASM Vx.x

8080/8085 ASM Vx.x

LIST
NAME
GLOBAL
COMMON
BLOCK
BLOCK
BLOCK
SECTION
BLOCK
BLOCK
END

SRC1

FP.ADD -

> ASM FPS.0OBJ CONO FPS.A3SM

Programming Examples—8500 MDL A Series Assembler Users

DBG

FP$ADD

FP.ADD, FP.AD2
FP$ACC

8

8

8

FP ADD

40~

350

Symbol Table

0000

0000 G

The listing is

to CONO (the system terminal), so that you may examine it.]

Page
Page
C =-===-- 0001
H ------ 0004
PSW ---- 0006
SRC2 --- 0008

47672 Bytes available
47672 Bytes available

assembly errors detected <<X<
assembly errors detected <K<

assemble FPS.ASM into FPS.CBJ.]

REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 ASM Vx.x

#%%¥% Pass 2

Tektronix 8080/8085 ASM Vx.x Page 1

00001 LIST DBG

00002 NAME FP$SUB

00003 GLOBAL FP.SUB, FP.3U2

00004 GLOBAL FP.AD2

00005 COMMON FP$ACC

00006 0000 0008 SORC1 BLOCK 8

00007 0008 000 SORC2 BLOCK 8

00008 0010 0008 DST BLOCK 8

00009 SECTION FP_SUB

00010 0000 0046 FP.SUB BLOCK 70

00011 0046 O0O01E FP.SU2 BLOCK 30

00012 0064 CD0O0OOO > CALL FP.AD2

00013 0067 0023 BLOCK 35

00014 END

Tektronix 8080/8085 ASM Vx.x Symbol Table Page 2

Scalars
A - 0007 B ------ 0000 C -=-===-- 0001
D —==—-- 0002 E ——=--- 0003 I 0004
L ——-——- 0005 M -—eee- 0006 PSW ~--- 0006
SP -==--- 0006

FP$ACC Common (0018)

DST ---- 0010 SORC1 -- 0000 SORC2 -~ 0008
FP_SUB Section (008A)
FP.SU2 - 0046 G FP.SUB - 0000 G

FP.AD2 Unbound Global

14 Source Lines
14 Source Lines

14 Assembled
14 Assembled

Lines
Lines

47656 Bytes available
47656 Bytes available

>>> No assembly errors detected <K<K

>>> No assembly errors detected <K<K
¥ASM¥* EOJ

REV A FEB 1981 9-13

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users

Creating the Library

Now, you can use the library generator (LibGen) to create the floating-point library. LibGen is
discussed in the Library Generator section of this manual. Enter the underlined characters to
create the floating-point library FP.LIB from the two object modules.

[Invoke LibGen in interactive mode.]
> LIBGEN

[Select the listing file name.]
¥ IST FP.LBGL

[Designate the name of the library.]
¥NEWLIB FP.LIB

[Now enter the list of object files to be included in this library.]
*INSERT FPS.OBJ

¥INSERT FPA.OBJ

[All finished... terminate with the END command.]
¥END

NEW LIBRARY GENERATED: FP.LIB

MODULE: FP$SUB FROM FPS.O0BJ INSERTED
MODULE: FP$ADD FROM FPA.OBJ INSERTED
LIBGEN¥ EOJ

[Display the listing on the system terminal.]
> COP _FP;N

Tektronix Library Generator Vx.x COMMAND LOG Page 1
LIST FP.LBGL

NEWLIB FP.LIB

INSERT FPS.OBJ

INSERT FPA.OBJ
END

Tektronix Library Generator Vx.x SYMBOLS DEFINED Page 2
MODULE: FP$SUB
(S) FP$ACC (S) FP_SUB (E) FP.SUB (E) FP.SU2

MODULE: FP$ADD
(S) FP$ACC (3) FP_ADD (E) FP.ADD (E) FP.AD2

Tektronix Library Generator Vx.x SUMMARY OF ACTION Page 3
NEW LIBRARY GENERATED: FP.LIB
MODULE: FP$SUB FRCM FPS.0BJ INSERTED

MODULE: FP$ADD FRCM FPA.OBJ INSERTED
¥COPY¥* EOJ

9-14 REV FER 1983

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

Notice that the subtraction routine is placed before the addition routine in the library. The
sample mainline programs (presented later) show why the modules are inserted in this order.

Using the ADD Module from a Program

The information stored in the library can be used by a mainline program that references one
of the library module’s global entry points. The following mainline program uses the FP$SADD
module of the library; a line-by-line annotation follows the listing.

The Mainline Add Program

LIST DBG ; line 1
NAME MAIN.ADD ; line 2
GLOBAL FP.ADD ; line 3
COMMON FP$ACC ; line &4
S1 BLOCK 8 ; line 5
S2 BLOCK 8 ; line 6
DESTN BLOCK 8 ; line 7
SECTION MAIN ; line 8
ENTRY BLOCK 40 ; line 9
CALL FP.ADD ; line 10
MORE BLOCK 50 ; line 11
END ENTRY ; line 12

Explanation of the Mainline Add Program

Line 1 enables the linker to display all internal (non-global) symbols with their relocated
values. This feature of the linker enables you to examine normally invisible operations.

Line 2 gives the name MAIN.ADD to the object module.

Line 3 declares the symbol FP.ADD as a global symbol. This symbol is not defined in this
object module; therefore, the symbol is called an "unbound” global. The linker will attempt to
locate a definition for FP.ADD; the library FP.LIB {created earlier) will provide this definition.

Lines 4 through 7 define the structure of the floating-point accumulator. In this module, the
two source fields and destination field are called S1, S2, and DESTN.

Line 8 begins the definition of the main section (called MAIN). All object bytes generated
after this directive are gathered into the MAIN section.

Line 9 sets aside memory space for an unspecified number of processor instructions; these
instructions load values into S1 and DESTN for processing. in a real program, this BLOCK
directive would be replaced with microprocessor instructions, such as data transfer
instructions or /0 operations.

REV A FEB 1981 9-15

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users

Line 10 is an 8080A/8085A instruction. The subroutine FP.ADD (contained in the floating-
point library) is invoked. The contents of S1 are added to the contents of DESTN, and the
subroutine returns to the memory location following the CALL instruction.

Line 11 represents more microprocessor instructions following the invocation of the ADD
routine. These instructions might perform some type of output to display the results of the
addition.

Line 12 defines the end of this source module. The operand ENTRY is designated as the
starting address of the instructions. The value of this address will be passed along to the
linker; the linker then determines its relocated address, and displays this final value as a
transfer address.

Entering, Assembling, and Linking the Program
The mainline add program can be entered, assembled, and linked using the following
command entries:

[Invoke the editor to enter the program into file MNA.ASM.]
> EDIT MNA.ASM

¥ EDIT VERSION x.x
¥* NEW FILE

[Select a visible tab character and enter the assembly statements.]
*XTABS ON:TAB \:INPUT
INPUT:

\LIST\DBG
\NAME\MAIN.ADD
\NGLOBAL\FP,ADD
\COMMON\FP§ACC

S T\BLOCK\8
S2\BLOCK\8
DESTN\BLOCK\8
\SECTION\MAIN
ENTRY\BLOCK\IQ
\CALL\FP.ADD

MORE\BLOCK\50
\END\ENTRY
[Display the lines with tab characters expanded to spaces.]
*TYPE B-E
LIST DBG

NAME MAIN.ADD
GLOBAL FP.ADD
COMMON FP$ACC
S1 BLOCK 8
S2 BLOCK 8
DESTN BLOCK 8
SECTION MAIN
ENTRY BLOCK 40
CALL FP.ADD
MORE BLOCK 50
END ENTRY
*FILE
¥*END OF TEXT
¥XEOF

9-16 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users

Creating and Using a Subroutine Library

[P

[Assemble
> ASM MNA

MNA.ASM into MNA.OBJ.]

.0OBJ CONGC MNA.ASM

Tektronix
¥%X%% Pass

8080/8085 ASM Vx.

2

Tektronix 8080/8085 ASM Vx.x Page

00001 LIST DBG

00002 NAME MAIN.ADD

00003 GLOBAL FP.ADD

00004 COMMON FP$ACC

00005 0000 0008 S1 BLOCK 8

00006 0008 0008 Se BLOCK 8

00007 0010 0008 DESTN BLOCK 8

00008 SECTION MAIN

00009 0000 0028 ENTRY BLOCK 40

00010 0028 CDOO0OO > CALL FP.ADD

00011 002B 0032 MORE BLOCK 5C

00012 0000 > END ENTRY

Tektronix 8080/8085 ASM Vx.x Symbol Table Page

Scalars
A e 0007 B ==-w-—-- 0000 C —==e=- 0001
D === 0002 E —====- 0003 H === 0004
0005 M ceeeee 0006 PSW ---- 0006
SP wm==- 0006

FP$ACC Common (0018)
DESTN -- 0010 S1 —==-- 0000 S22 —=-=- 0008

MAIN Section (005D)
ENTRY -- 0000 MORE --- 002B

FP.ADD Unbound Global

47669 Bytes available
47669 Bytes available

12 Assembled Lines
12 Assembled Lines

12 Source Lines
12 Source Lines

>>> No assembly errors detected <<K

>>> No assembly errors detected <<<
¥ASM*® EO.

o
G

[Link the mainline program together with the floating-point library.]
> LINK MNA.LOAD MNA.LNKL MNA.OBJ LIB(FP.LIB)

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 3 SECTIONS
TRANSFER ADDRESS IS 019E

*LINK¥ EOJ

REV A FEB 1981 9-17

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users

[Display the linker listing file on the system terminal.]
> COP MNA.LNKL

Tektronix 8080/8085 LINKER V x.x GLOBAL SYMBOL LIST Page 1

FP$ACC 0000 FP.AD2 0040 FP.ADD 0018 FP_ADD 0018
MAIN 019E

Tektronix 8080/8085 LINKER V x.x INTERNAL SYMBOL LIST Page 2

FILE: MNA.OBJ

MODULE: MAIN.ADD

SCALARS:
A 0007 B 0000 C 0001 D 0002
E 0003 H 0004 L 0005 M 0006
PSW 0006 SP 0006

LABELS: (SECTION FP$ACC)
DESTN 0010 S1 0000 Se2 0008

LABELS: (SECTION MAIN)
ENTRY 019E MORE 01C9

Tektronix 8080/8085 LINKER V x.x INTERNAL SYMBOL LIST Page 3

FILE: FP.LIB
MCDULE: FP$ADD

SCALARS:
A 0007 B 0000 C 0001 D 0002
E 0003 H 0004 L 0005 M 0006
PSW 0006 SP 0006

LABELS: (SECTION FP$ACC)
DEST 0010 SRC1 0000 SRC2 0008

LABELS: (SECTION FP_ADD)
FP.AD2 0040 FP.ADD 0018

9-18 REV FEB 1983

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 LINKER V x.x MODULE MAP Page 4

FILE: MNA.OBJ

MODULE: MAIN.ADD
FP$ACC COMMON BYTE 0000-0017
MAIN SECTION BYTE 019E-O1FA

FILE: FP.LIB

MODULE: FP$ADD
FP$ACC COMMON BYTE 0000-0017
FP_ADD SECTION BYTE 0018-019D
FP.AD2 0040 FP.ADD 0018

Tektronix 8080/8085 LINKER V x.x MEMORY MAP Page 5

0000-0017 FP$ACC COMMON BYTE
0018-019D FP_ADD SECTION BYTE
019E-01FA MAIN SECTION BYTE

NO ERRORS NO UNDEFINED SYMBOLS
2 MODULES 3 SECTIONS
TRANSFER ADDRESS IS 019E

¥COPY* EOJ

Linking Explanation

The library module containing the floating-point addition routine is automatically linked in
with the mainline program. The linker determined that a global symbol (FP.ADD) had not

and found that module FP$SADD provided a value for this global symbol. The linker included
module FP$SADD in the load module. This process is illustrated in Fig. 9-4.

REV A FEB 1981 9-19

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users

..,

Floating-point Library (FP.LIB)
FP$SUB
FP$ADD
"l have FP.SUB” f

"I have FP.SU2" T —"l have FP.ADD"”

"l need FP.AD2" | “l have FP.AD2”
MNA.OBJ |
(mainline add program) |
] I
"l need FP.ADD" _—l— —_——— — —_———_—— — d

The linked program (MNA.LOAD)
(from MNA.OBJ) (from FPSADD)
3575-16

Fig. 9-4. Linking the add program to the library.

In this example, MNA.OBJ needs a definition for its unbound global symbol, FP.ADD. The linker
examines the contents of the library FP.LIB, and locates module FP$SADD, which provides a definition
for FP.ADD. Both MNA.OBJ and module FP$ADD are then included in the final load file. FP$SUB does
not provide definitions for any unbound globals, so it is not included in the final load file.

Using the SUBTRACT Module From a Program

Let's modify the mainline program to invoke the subtract routine. In this way, we can watch
the linker extract one module from the library to satisfy the request made by the mainline
program, and another module from the library to satisfy the first library module.

9-20 REV A FEB 1981

Programming Examples—8500 MDL. A Series Assembler Users Creating and Using a Subroutine Library

The Mainline Subtract Program

LIST DBG ; 1ine 1
NAME MAIN.SUB ; line 2
GLOBAL FP.SUB ; line 3
COMMON FP$ACC ; line 4
S1 BLOCK 8 ; line 5
S2 BLOCK 8 ; line 6
DESTN BLOCK 8 ; line 7
SECTION MAIN ; line 8
ENTRY BLOCK 45 ; line 9
CALL FP.SUB ; line 10
MORE BLOCK 35 ; line 11
END ENTRY ; line 12

Explanation of the Mainline Subtract Program

The mainline subtract program is similar to the mainline add program, with the following
exceptions:

1. The name of the module (in line 2) is MAIN.SUB, not MAIN.ADD.
2. The global symbol requested in lines 3 and 10 is FP.SUB, not FP.ADD.

3. The size of the code representations in lines 9 and 11 has been altered, to show the
relocatability of the library sections.

Entering, Assembling,and Linking the Program

Like the mainline add program, the mainiine subtract program can be entered, assembied,
and linked using the following command entries:

[Invoke the editor to create MNS.ASM.]
> EDIT MNS.ASM

¥*¥ EDIT VERSION x.x
¥¥ NEW FILE

[Select a visible tab character, and enter the assembly statements.]
¥XTABS ON:TAB \:INPUT
INPUT:

\LIST\DBG
\NAME\MAIN.SUB
\GLOBAL\FP.SUB
\COMMON\FP$ACC
ST\BLOCK\8

S2\BLOCK\8
DESTN\BLOCK\8
\SECTION\MAIN
ENTRY\BLOCK\45
\CALL\FF.3UB
MORE\BLOCK\35
\END\ENTRY

REV A FEB 1981 9-21

Creating and Using a Subroutine Library

Programming Examples—8500 MDL A Series Assembler Users

9-22

[Display th

*TYPE B-E
LIST
NAME
GLOB
COMM
S1 BLOC
S2 BLOC
DESTN BLOC
SECT
ENTRY BLOC
CALL
MORE BLOC
END
¥FILE
*¥¥ END OF
%% EQOF

e expanded statements.]

DBG
MAIN.SUB
AL FP.SUB
ON FP$ACC
K 8
K 8
K 8
ION MAIN
K 45
FP.SUB
K 35
ENTRY
TEXT

[Assemble the source file into an object file.]
> ASM MNS.OBJ CONO MNS.ASM

Tektronix
¥X%X Pass 2

Tektronix

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
0c012

0000
0008
0010

0000
002D
0030

808078085 ASM Vx.x

8080/8085 ASM Vx.x

LIST
NAME
GLOBAL
COMMON
0008 S1 BLOCK
0008 sS2 BLOCK
0008 DESTN BLOCK
SECTION
002D ENTRY BLOCK
cpeoco > CALL
0023 MORE BLOCK
0CCs > END

Page

DBG
MAIN.SUB
FP.SUB
FP$ACC
8

8

8

MAIN
45
FP.SUB
35
ENTRY

REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

Tektronix 8080/8085 ASM Vx.x Symbol Table Page 2
Scalars
A e 0007 B ~==--- 0000 O 0001
. 0002 E —mmmm-e 0003 H mmmmmm 0004
| F——— 0005 Y — 0006 PSW ---- 0006
SP —mmm- 0006

FP$ACC Common (0018)

DESTN -- 0010 N 0000 S2 === 0008
MAIN Section (0053)

ENTRY -- 0000 MORE --- 0030

FP.SUB Unbound Global

12 Source Lines 12 Assembled Lines 47669 Bytes available
12 Source Lines 12 Assembled Lines 47669 Bytes available

>>> No assembly errors detected <KX
>>> No assembly errors detected <K<
*ASM¥ EOJ

[Link the mainline program with the library.]
> LINK MNS.LOAD MNS.LNKL MNS.OBJ LIB(FP.LIB)

NO ERRORS NO UNDEFINED SYMBOLS
3 MODULES 4 SECTIONS
TRANSFER ADDRESS IS 0228

LINK¥ EOJ

[Display the resulting linker listing file.]
> COP_ MNS.LNKL

Tektronix 8080/8085 LINKER V x.x GLOBAL SYMBOL LIST Page 1

FP$ACC 0000 FP.AD2 0040 FP.ADD 0018 FP.SU2 O1EH
FP.SUB 019E FP_ADD 0018 FP_SUB 019E MAIN 0228

REV FEB 1983 9-23

Creating and Using a Subroutine Library

Programming Examples—8500 MDL A Series Assembler Users

Tektronix

FILE: MNS.OBJ

MODULE: MAIN.S
SCALARS:

A

E

PSW

LABELS:
DESTN

LABELS:
ENTRY

Tektronix

FILE: FP.LIB

MODULE: FP$SUB
SCALARS:

A

E

PSW

LABELS:
DST

LABELS:
FP.SU2

Tektronix

FILE: FP.LIB

MODULE: FP$ADD
SCALARS:
A

E
PSW

LABELS:
DEST

LABELS:
FP.AD2

9-24

UB

0007
0003
0006

(SECTION
0010

(SECTION
0228

0007
0003
0006

(SECTION
0010

(SECTION
O1E4

0007

0003
0006

(SECTION
0010

(SECTION
0040

8080/8085 LINKER V x.x

B
H
SP

FP$ACC
S1

MAIN
MORE

8080/8085 LINKER V x.x

B
H
SP

FP$ACC
SORC1

FP SUB
FP.SUB

8080/8085 LINKER V x.x

B

H
SP

FP$ACC
SRC1

FP_ADD
FPLADD

)

)

)

)

)

)

0000
0004
0006

0000

0258

0000
0004
0006

0000

019E

0000
0004
0006

0000

0018

INTERNAL SYMBOL LIST Page
c 0001 D
L 0005 M
S2 0008

INTERNAL SYMBOL LIST Page
c 0001 D
L 0005 M
SORC2 0008

INTERNAL SYMBOL LIST Page
c 0001 D
L 0005 M
SRC2 0008

0002
0006

0002
0006

0002
0006

REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating and Using a Subroutine Library

M

Tektronix 8080/8085 LINKER V x.x MODULE MAP Page 5

FILE: MNS.OBJ

MODULE: MAIN.SUB
FP$ACC COMMON BYTE 0000-0017
MAIN SECTION BYTE 0228-02T7A

FILE: FP.LIB

MODULE: FP$SUB
FP$ACC COMMON BYTE 0000-0017
FP_SUB SECTION BYTE 019E-0227
FP.3U2 01E4 FP.SUB 019E

MODULE: FP$ADD
FP$ACC COMMON BYTE 0000-0017
FP_ADD SECTION BYTE 0018-019D
FP.AD2 0040 FP.ADD 0018

Tektronix 8080/8085 LINKER V x.x MEMORY MAP Page 6

0000-0017 FP$ACC COMMON BYTE
0018-019D FP_ADD SECTION BYTE
019E-0227 FP_SUB SECTION BYTE
0228-027A MAIN SECTION BYTE

NO ERRORS NO UNDEFINED SYMBOLS
3 MODULES 4 SECTIONS
TRANSFER ADDRESS IS 0228

¥COPY¥* EOJ

Linking Explanation

For the mainline subtract program, the library module FP$SUB is referenced using the global
symbol FP.SUB. This brings module FP$SUB into the final load module. However, FP$SUB
itself contains a reference to an unbound global symbol, FP.AD2. The definition for this
unbound global symbol is found in the FPSADD library module. The linker must include both
modules from the library to satisfy all requests for global symbols. This process is illustrated
in Fig. 9-5.

REV A FEB 1981 9-25

Creating and Using a Subroutine Library Programming Examples—8500 MDL A Series Assembler Users

Floating-point Library (FP.LIB)
FP$SUB
(FP$SADD
— — T "lhave FP.SUB”
| "I have FP.SU2" I “I have FP.ADD"
I “l need FP.AD2" — j_ — _l — | have FP.AD2"
|
|
MNS.OBJ |
{mainline subtract program) |
“! need FP.SUB" J—]
(from MNS.OBJ) (from FP$SUB) (from FP$SADD)
The linked program (MNS.LOAD)
3575-17

Fig. 9-5. Linking the subtract program to the library.

In this linking example, MNS.OBJ requests definition for an unbound global, FP.SUB. The linker scans
the library (starting at the left in this figure), and locates a definition for FP.SUB, in module FP$SUB.
However, FP$SUB itself contains a reference to an unbound global symbol, FP.AD2. The linker
continues to scan the library, and finds a definition for FP.AD2 in library module FP$ADD. Thus, the
final load file contains all three modules (mainline MNS.OBJ, and FP$SUB and FP$ADD from the

library} linked together.

This example illustrates why the subtract module (FP$SUB) was placed before the add
module (FP$ADD). The linker scans the modules of a library only once, in a front-to-back
order. If FP$SUB had been located after FP$SADD, then the linker would not have found the
definition for the FP.AD2 symbol after linking in FP$SUB.

9-26 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users DOS/50 SVC Generation

—

DOS/50 SVC GENERATION

This example explores two areas of DOS/50 service calls: creating service request blocks
(SRBs), and generating the required microprocessor service call (SVC) instructions. This
example uses the 8080A/8085A instruction set, but similar techniques can be applied to
most processors.

This example assumes you are familiar with the use of SVCs under DOS /50, as described
in the Service Calls section of the 8550 System Users Manual.

Creating Service Request Blocks
The first task in using an SVC is to create an appropriate SRB. The SRB consists of eight

bytes:
1. a function code,
2. a channel number,
3. a status byte,
4. a single-byte data item,
5. a byte count for 1/0 operations,
6. a buffer length,
7. the high-order byte of the buffer address, and
8. the low-order byte of the buffer address.

The buffer (specified by the last three bytes) is used for /0 operations.

Setting up the SRB in your source program can be made easier when you use an
"intelligent” macro. The macro can decide (based on the parameters you give it) whether to
generate a SRB location vector, what the names of the SRB components are, what the size of
the 1/0 buffer is, and other miscellaneous items. The following assembler source statements
define a macro that performs these functions. A line-by-line description follows the listing.

REV A FEB 1981 9.27

DOS /50 SVC Generation
—

9-28

The SRB Macro

STRING
MACRO
SRB$SEC SET
IF
RESUME
ELSE
SECTION
ENDIF
.FUN BLOCK
.CHN BLOCK
.STA BLOCK
.DAT BLOCK
.CNT BLOCK
IF
'1'".LEN BLOCK
'1'.HIB BLOCK
'1'.LOB BLOCK
ELSE
IF
SRB$BUF SET
ELSE
SRB$BUF SET
ENDIF
'1'.LEN BYTE
'1'.HIB BYTE
'1'.LOB BYTE
IF
RESUME
ELSE
SECTION
ENDIF
'SRB$BUF' BLOCK
ENDIF
IF
IF
RESUME
ELSE
SECTION
ENDIF

CRG

BYTE
BYTE
ENDIF
RESUME
ENDM

- - e . -

- - . = -

SRB$SEC(8), SRB$BUF(16)

SRB

'l'%l"
DEF(SRB.SEC)
SRB.SEC

SRB.SEC

P G

R R
2

_ s

"!4!"=""

w11 BUF"
wijgn

130
HI('SRB$BUF')
LO('SRB$BUF ")

DEF(BUF.SEC)
BUF .SEC

BUF.SEC

131
mioingynn
DEF(SRB.VEC)
SRB.VEC

SRB.VEC, ABSOLUTE

NOH+2%(127-1}
HI('1'.FUN)
LO("1".FUN)
"SRB$SEC'

Explanation of the SRB Macro
The macro is invoked with the following parameters:

Programming Examples—8500 MDL A Series Assembler Users

R s e tes MR N M e MR ae WP e W s s s NP nae MO e WS e WS wd W e e wes NE e MO N e we M e W ee W ee W e NS el e

line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line
line

S LOOIOUVIEW N —

Dl JE JE N R S R
WO~V =W = O

[ACH\CI\VE\V}
wmn —=o

N
U =

NN
o~

WWwwwwwww ww
WO~V EWN —mO

(@)

FgiegS
U= WhN —

1. The first parameter is the name of the SRB. The name must be one to four characters
long, and must be a valid symbol prefix. Many labels describing parts of the SRB and

buffer are derived from this name.

2. The second parameter is optioral; if present, the parameter designates the SVC
number (1 to 6) that will be used with this SRB. If you provide this number, the macro
will create the appropriate pointer to this SRB in the 40H to 4BH area of memory. If
you omit this parameter, you must use other assembler statements to supply the

pointer.

REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users DOS /50 SVC Generation

3. The third parameter is optional; if present, the parameter designates the size of /0
buffer to be associated with this SRB. The last three bytes of the SRB are correctly
altered to describe the buffer’s size and location, and the buffer of this size is created.
The name of the buffer is controlled by the fourth parameter. If you omit the third
parameter, the last three bytes of the SRB are left empty.

4. The fourth parameter is optional; if present, the parameter selects the name of the
buffer associated with this SRB. If you omit this parameter, the macro chooses a name
derived from the SRB name. This parameter will be ignored if the third parameter is
not present.

Line 1 creates two string assembler variables: SRB$SEC and SRB$BUF. These variables are
used within the body of the assembler macro to temporarily store data, so that it may be
retrieved later in the macro. These variables are further discussed when they are used.

Line 2 defines the beginning of the macro, and gives the macro the name SRB.

Line 3 saves the current section name in the assembler variable SRBSSEC. The current
section name is saved so that it may be restored later; the remaining statements in this
macro switch sections at least once.

Lines 4 through 8 switch the current section to SRB.SEC, so that later assembler statements
can generate object bytes for an SRB. The IF statement determines whether or not the
section SRB.SEC was previously started: if so, a simple RESUME statement is processed, to
continue object code generation; if not, the section is begun with a SECTION statement, as
its first definition. This technique of using IF DEF(section-name) to conditionally resume a
section is used twice again, starting in lines 27 and 35.

Lines 9 through 13 define the common patt of the SRB. Each byte of the SRB is given a
descriptive name (label). This label consists of the SRB name (given as the first parameter at
invocation) followed by a four-character suffix. The suffix for each SRB bvte indicates the
function of that byte. For example, if the first parameter at macro invocation is QQ, then the
five bytes generated by these five lines of code are: QQ.FUN (function), QQ.CHN (channel),
QQ.STA (status), QQ.DAT (byte data), and QQ.CNT (I/O count).

Lines 14 through 33 generate the last three bytes of the SRB, and create the buffer (if
necessary). Three possible combinations exist:

1. No third parameter: the last three bytes of the SRB are generated like the first five —
labels are generated and space is allocated, but no values are inserted into the SRB
bytes.

2. Third parameter only: The last three bytes of the SRB describe a buffer generated by
this macro. The name of the buffer is derived from the name of the SRB, in the same
way as the name of the SRB components.

3. Both third and fourth parameters: Again, the last three bytes of the SRB describe a
buffer generated by this macro, but the name of the buffer is explicitly given (by the
fourth parameter).

Line 14 examines the third parameter: if absent, lines 15 through 17 are assembled; if

present, lines 19 through 32 are assembled. In either case, the other block of statements is
skipped.

REV A FEB 1981 9-29

DOS /50 SVC Generation Programming Examples—8500 MDL A Series Assembler Users

PRERREEREEEEAEEEE S S S

Lines 15 through 17 generate the last three bytes of the SRB when the third parameter is
absent. Again, the names of the three bytes are derived from the SRB name given in the
macro invocation line. If the SRB name is QQ, for example, three bytes are generated:
QQ.LEN (length of buffer), QQ.HIB (high byte of the buffer address), and QQ.LOB (low byte of
the buffer address).

Lines 19 through 23 determine the name of the buffer. If the fourth parameter is absent, the
name of the buffer is created from the SRB name; for example, an SRB name of QQ produces
a buffer name of QQ.BUF. If a fourth parameter is present, then it is used as the buffer name.
In either case, the buffer name is assigned to the assembler string variable SRB$BUF. This
variable is used later in the macro.

Lines 24 through 26 generate the last three bytes of the SRB, using the given size and name
of the buffer. As with the other bytes of the SRB, each of these bytes is given a label derived
from the SRB name. For example, a SRB name of QQ generates the labels QQ.LEN, QQ.HIB,
and QQ.LOB. However, unlike the other bytes of the SRB, these bytes are given values at
assembly time. Because the location and size of the buffer are known, the correct values can
be given to these bytes.

Lines 27 through 31 change the current section to BUF.SEC, using the method described
previously (lines 4 through 8). Section BUF.SEC contains any 1/0 buffers generated by the

macro.

Line 32 generates the |/0 buffer. The name is defined in the assembler string variable
SRBS$BUF. The size is taken from the third invocation parameter.

Lines 34 through 43 generate a pointer to the SRB in the SRB vector (fixed locations 40H to
4BH) only if the second parameter is present.

Lines 35 through 39 define SRB.VEC as the current section. This section is absolute (non-
relocatable), because the vectors must be in fixed locations in memory.

Line 40 generates an assembler ORG directive to place the pointer in the proper location.
The operand of the ORG directive computes an address from the second parameter in the
invocation; this parameter is a digit from 1 to 6.

Lines 41 and 42 generate a pointer to the SRB’s first entry, the function byte.

Line 44 restores the current section to the section name that was saved upon entry into this
macro.

Line 45 terminates the definition of the macro.

9-30 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users DOS/50 SVC Generation

Sample Invocations of the SRB Macro
The SRB macro can be invoked in many different ways, depending on the needs of the
situation. For example, in its simplest invocation,

SRB QQQ

only an SRB is generated. The name of the SRB is specified in the first parameter, QQQ. The
SRB consists entirely of BLOCK assembler directives; your program is expected to place
values into the various bytes of the SRB.

The SRB macro can be invoked with an SVC number, like this:
SRR RRR, U

The SRB macro automatically places the appropriate pointer to the SRB (named RRR) at
locations 46H and 47H. Again, no part of the SRB is given a value at assembly time; your
program must supply all values (including pointers to buffers) at program execution time.

If you wish to specify a buffer, include the third and fourth parameters. For example,
SRB sss, , 128, BUFFER

specifies a BUFFER that is 128 bytes long. This buffer is created automatically by the macro.
The macro also places values (describing the location and length of the buffer) into the last
three bytes of the SRB, relieving your program of this responsibility.

If you do not require a specific buffer name, omit the fourth parameter. The name will be
derived from the SRB name. You still specify the third parameter, to tell the macro the length
of buffer to be created. For example, the macro invocation

SRB TTT, , 64

creates a 64-byte buffer named TTT.BUF.

You can create the buffer and SRB pointer simultaneously by including all four parameters in
the SRB macro. For example, the invocation
SRB uuu, 3, 80, MYBUF

creates an SRB named UUU, a pointer to the SRB at addresses 44H and 45H (the SVC 3
vector location), and an 80-byte buffer named MYBUF.

Generating Service Calls

The task of generating the service call consists of placing two microprocessor-dependent
instructions in vour program. The first instruction is usually a data transfer instruction, while
the second is a no-operation instruction. For an 8080A/8085A microprocessor, the OUT and
NOP instructions are used for SVCs.

You can use an assembler macro to assist you in creating the OUT/NOP instruction

sequence. The following listing presents a sample macro. A line-by-line description follows
the listing.

REV A FEB 1981 9-31

Creating Constant Values Programming Examples—=8500 MDL A Series Assembler Users

The SVC Macro

MACRO SvC ; line 1
IF "'1 ll|="l| ; line 2
WARNING ; Missing SVC Number ; line 3
ELSE ; line U4
ouT OF8H-1"1" ; line 5
NOP ; line 6
ENDIF ; line 7
ENDM ; line 8

Explanation of the SVC Macro
This macro is invoked with one parameter, the SVC number: a single digit between 1 and 6.

Line 1 defines the name of the SVC-generation macro.

Lines 2 through 7 form an IF..ELSE..ENDIF block. If the first parameter is absent, line 3 is
processed. If the first parameter is present, lines 5 and 6 are processed.

Line 3 (processed only if no first parameter is given) generates an error message. This
message indicates that the required parameter has not been given in this invocation of the
macro. The error message appears on the listing and the system terminal.

Lines 5 and 6 generate an 8080A/8085A service call instruction sequence. Line 5 generates
an OUT instruction; the address of the OUT instruction is computed from the first macro
parameter. Line 6 generates the required NOP (no-operation) instruction.

Line 8 terminates the macro definition.

Sample Invocation of the SVC Macro

The SVC macro is simple to invoke: simply provide the SVC number as the first parameter.
For example,

SvC 4

generates the proper instruction sequence for SVC 4. if the first parameter is omitted, an
error message is generated.

CREATING CONSTANT VALUES

This example illustrates the use of a macro to declare a constant value in a separate
assembler section. In this example, two versions of the macro are shown: one to define
values to be stored in ROM, and the other to define values to be stored in RAM. By using
these two macros, you can store constants in either ROM or RAM from anywhere within
your program.

Here’'s how the macro works: first, it switches from the current section to an alternate
section. Then, it generates the object code for the statements specified. It ends by switching
back to the original section. By using statements with data storage directives (such as ASCII,
BYTE, BLOCK, and WORD), you can store values in the alternate section.

9-32 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating Constant Values

—

The macro may be invoked by one of two methods:

® Method 1. The statement lines to be assembled in the alternate section are passed as
parameters in the operand field of the macro invocation.

® Method 2. The statement lines to be assembled in the alternate section are a sequence
of lines following the macro invocation. The macro invocation has no parameters in the
operand field. The invocation of a second macro terminates the sequence of lines and
resumes the original section.

Sample invocations are presented later in this example.

The CONSTANT Macro

This version of the macro stores values in a section ROM.CODE, which can be assigned to
ROM memory at link time.

STRING CON$SAVE,CONS$SEC ; line 1
CON$SEC SET "ROM.CODE™ ; line 2
MACRO CONSTANT ; line 3
CON$SAVE SET mrgan ; line 4
IF DEF('CON$SEC!') ; line 5
RESUME 'CON$SEC! ; line 6
ELSE ; line 7
SECTION 'CONS$SEC! ; line 8
ENDIF ; line 9
IF v ; line 10
CON$CNT SET 1 ; line 11
REPEAT CON$CNT <= ‘'#!' ; line 12
'"CONSCNT! ; line 13
CON$CNT SET CONSCNT + 1 ; line 14
ENDR ; line 15
ENDCONSTANT ; line 16
ENDIF ; line 17
ENDM ; line 18
MACRO ENDCONSTANT ; line 19
RESUME "CONS$SAVE' ; line 20
ENDM ; line 21

Line 1 creates two string assembler variables, CON$SAV and CONSSEC. These variables are
used within the body of the macro to temporarily store data.

Line 2 assigns the character string "ROM.CODE" to the variable CONSSEC. The variable is
used for the name of the section in which the constants are stored.

Line 3 defines the beginning of the macro and gives it the name CONSTANT.

Line 4 saves the current section name in the variable CON$SAVE so that it may be resumed
later.

Lines 5 through 9 switch the current section to the section ROM.CODE (the value of the
variable CONSSEC). The IF statement determines whether or not the section ROM.CODE was
previously defined (started): if so, the RESUME statement (line 6) continues the section
definition; if not, the SECTION statement (line 8) begins the section definition.

REV A FEB 1981 9-33

Creating Constant Values Programming Examples—8500 MDL A Series Assembler Users

L]

Line 10 tests for the presence of a parameter. The assembler replaces the construct ‘#’ with
the number of parameters in the macro invocation line. If the parameter count is non-zero,
the assembler processes lines 11 through 16. Otherwise, the assembler skips to line 18.

Line 11 initializes the assembler variable CONSCNT to designate the first parameter. This
variable is incremented later (line 14) for each parameter.

Lines 12 through 15 form a conditional repeat block. In this block, the invocation parameters
are processed within the macro. The first time the repeat loop is processed, the value of
CONSCNT is 1, and the construct ‘"CONSCNT’ (in line 13) is replaced by the first parameter.
As CONSCNT is incremented (line 14), each successive parameter is processed, until the
value of CONSCNT exceeds the number of parameters passed (‘# in line 12).

Line 16 invokes the macro ENDCONSTANT, which is defined in lines 19 to 21.

If '#" was zero in line 10, the assembler proceeds to line 18 (the first statement following the
ENDIF). This statement terminates the macro. The assembler will then process the next
statement lines following the invocation of the CONSTANT macro. These statements provide
data for section ROM.CODE. The statement lines will continue to be processed within section
ROM.CODE until macro ENDCONSTANT is invoked.

Line 19 through 21 define macro ENDCONSTANT. The macro ENDCONSTANT simply
switches the current section back to the section name that was saved at the beginning of this
macro (line 4).

The VARIABLE Macro

A similar macro can be created to store variables in RAM. The section RAM.CODE can be
assigned to RAM memory at link time.

STRING VAR$SAVE, VARS$SEC

VAR$SEC SET "RAM.CODE"
MACRO VARIABLE
VAR$SAVE SET nrgn
IF DEF{'VAR$SEC")
RESUME 'VARS$SEC!
ELSE
SECTION 'VAR$SEC'
ENDIF
IF v
VAR$CNT SET 1
REPEAT VARSCNT <= '#!'
'VARS$CNT'
VARSCNT SET VARSCNT + 1
ENDR
ENDVARIABLE
ENDIF
ENDM

9-34 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Creating Constant Values

o e

The ENDVARIABLE macro definition is:

MACRO ENDVARIABLE
RESUME '"VARSSAVE'
ENDM

Macro Invocation

Assume that you would like to store a character string in a section of ROM memory and call
a routine to print that character string. (This example assumes that your program supplies a
subroutine PRINT. The subroutine prints each successive character pointed to by the HL
register until a return character is encountered.) The following invocation of the macro
CONSTANT could be used to store the message to be printed.

SECTION PRINCON

LXI H,MES1
CONSTANT MES1 ASCII "HELLO THERE",[BYTE 13]

N VN J

1st parameter 2nd parameter

CALL PRINT

The first line declares section PRINCON.

The second line is an 8080A/8085A instruction that loads the HL register with a pointer to
MES1.

The third line invokes the macro CONSTANT with two parameters. The first parameter is an
assembler statement that stores the ASCII representation of the character string “"HELLO
THERE” and has the location MES1. The second parameter [BYTE 13] generates one byte of
data with the value 13 {the ASCIl return character). The space in the first position of the
parameter causes the BYTE to be treated as an assembler directive, and not as a label. These
two lines are processed within the section ROM.CODE. The macro then switches back to the
section PRINCON.

The last line of this example, CALL PRINT, invokes the subroutine PRINT.

Macro CONSTANT simply switches to section ROM.CODE when you do not supply any
parameters. Any assembler statements between the invocation of CONSTANT (without
parameters) and a matching invocation of ENDCONSTANT are generated into section
ROM.CODE. For example, the following assembler statements produce identical results to
the previous example:

SECTION PRINCON

LXI H,MES1
CONSTANT

MES1 ASCII "HELLO THERE"
BYTE 13
ENDCONSTANT
CALL PRINT

In this invocation, the invocation of macro ENDCONSTANT terminates the alternate section
and resumes the original section.

REV A FEB 1981 9-35

Save-and-Restore Macro Programming Examples—8500 MDL A Series Assembler Users

With the use of macro VARIABLE, you could establish a data block in a section destined for
RAM. In this example, the symbol DATA.TAB points to a block of 512 bytes. The macro can
be invoked with either this sequence of statement lines:

LXI H,DATA.TAB
VARIABLE DATA.TAB BLOCK 512
CALL PROCESS

or this sequence:
LXI H,DATA.TAB
VARIABLE

DATA.TAB BLOCK 512

ENDVARIABLE
CALL PROCESS

SAVE-AND-RESTORE MACRO

This example uses two assembler macros in a common assembly language operation: saving
and restoring microprocessor registers. The example uses the 8080A/8085A instruction set;
however, the techniques illustrated here can be applied to nearly all stack-oriented
mMicroprocessors.

The SAVE Macro

MACRO SAVE ; line 1
IF Y ; line 2
SAVE$ SET 1 ; line 3
REPEAT SAVE$ <= '#° ; line 4
PUSH 'SAVE$! : line 5
SAVES$ SET SAVES$ + 1 ; line 6
ENDR ; line 7
ELSE ; line 8
SAVE B, D, H, PSW ; line 9
ENDIF ; line 10
ENDM ; line 11

This macro is used to save one or more registers on the stack. The parameters of the macro
invocation line designate the registers to be saved on the stack. The body of this macro
examines those parameters and generates the appropriate 8080A/8085A PUSH
instructions.

Line 1 begins the macro definition, and gives the macro the name SAVE. This name will be
used later in the program to invoke the macro.

Line 2 begins an IF..ELSE..ENDIF block. This IF statement has one operand: the construct '#".
The assembler will replace this construct with the number of parameters present in the
macro invocation line. If the parameter count is non-zero, the assembler processes all
statements between this IF statement and the corresponding ELSE statement (line 8). If the
parameter count is zero (meaning that the invocation statement consisted solely of the word
SAVE), the assembler processes the statements between the ELSE and ENDIF statements.

9-36 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Save-and-Restore Macro

Lines 3 through 7 are processed if the macro invocation includes one or more parameters.
The macro must generate one PUSH instruction for each parameter provided; each
parameter is the name of one 8080A/8085A register pair. A REPEAT..ENDR loop processes
each parameter in turn.

Line 3 initializes the assembler variable SAVES$ to 1. This assembler variable will be
incremented once for each parameter given in the macro invocation line.

Line 4 designates the beginning of the REPEAT..ENDR loop. The loop is repeated as long as
the assembler variable SAVES$ is not greater than the number of parameters passed to the

macro ('#').

Line 5 generates an 8080A/8085A PUSH instruction. The operand of the PUSH instruction
is obtained from the current value of SAVES$. For example, if SAVE$ is 3, and the third
parameter in the macro invocation is H, this statement generates an 8080A/8085A PUSH H
instruction.

Line 6 increments the value of the assembler variable SAVES.

Line 7 terminates the definition of the REPEAT..ENDR loop. As long as the expression
specified in the REPEAT statement is true (non-zero), the assembler will process the group of
statements within the REPEAT..ENDR block.

Line 8 terminates the IF.ELSE block.

Line 9 is processed only when the IF condition (in line 2) is false (zero). If SAVE is entered
with no parameters, the SAVE macro reinvokes itself with ali four possible parameters,
thereby saving all four register pairs.

Line 10 terminates the IF..ELSE..ENDIF block.

Line 11 statement terminates the definition of the macro.

The RESTORE Macre
MACRO RESTORE

IF 'L
RESTORE$ SET 1
REPEAT RESTORE$ <= '#°
POP "RESTORE$'
RESTORE$ SET RESTORE$ + 1
ENDR
ELSE
RESTORE PSW, H, D, B
ENDIF
ENDM

REV A FEB 1981 9-37

Conditional Assembly Programming Examples—8500 MDL A Series Assembler Users

The RESTORE macro is similar to the SAVE macro, with two changes:
1. The assembler variable is named RESTORES$ in this macro.

2. The order of the registers in the default macro invocation (no parameters) isreversed. The
stack operates in a last-in-first-out (LIFO) manner: the last register saved must be the first
register restored.

Sample Invocations

The SAVE and RESTORE macros are most commonly used at the beginning and end of
subroutines to insure that the subroutine does not destroy values in the registers needed by
the calling routine. For example, if all registers are used in a subroutine, you can include the
SAVE macro invocation (with no parameters) at the subroutine’s beginning, and the
RESTORE macro invocation (again, with no parameters) at the subroutine’s end, like this:

SUBR SAVE ; Beginning of subroutine SUBR; save all registers
; Body of the subroutine

I.QE:%TORE ; Restore all registers
RET ; 8080A/8085A return-from-subroutine instruction

If some (but not all) registers are used in the subroutine, you can invoke SAVE and RESTORE
with a list of those registers to be saved on the stack. Note that the order of the registers
must be reversed when restoring them from the stack.

SUBR SAVE H, PSW ; Save H-L and PSW-A
; Body of subroutine

RESTORE PSW, H ; Restore P3W-4, H-L
RET ; Return from subroutine

CONDITIONAL ASSEMBLY

This example illustrates some uses of the IF-ELSE-ENDIF or IF-ENDIF constructs for
conditional assembly.

Three typical examples are provided: (1) processor-independent programming, (2) use of
conditional assembly in macros, and (3) assembly based on relative memory locations.

9-38 REV A FER 1081

Programming Examples—8500 MDL A Series Assembler Users Conditional Assembly

Processor-independent Programming

A program may be written to run on two or more similar processors by placing the processor-
dependent instructions in conditional blocks. These conditional blocks check the processor
type and assemble the correct instructions.

MACRO SUBTRACT
; This is a processor-independent macro written for either the Z80 or the 8085

IF PROC="Z80" ; If processor is a Z80...
OR A ; Clear the accumulator
SBC HL,DE ; Subtract DE from HL

ELSE ; But, if not a 280..; .
IF PROC="8085" ; If processor is an 80854
LD A,L ; Transfer L to A

SUB E ; Subtract E from A

LD L,A ; Move A to L

LD A,H ; Move H to A

SBC D ; Subtract (carry+D) from A
LD H,A ; Move A to H

ELSE ; But, if not 8085...
WARNING ; WRONG PROCESSOR - 'PROC'
ENDIF

ENDIF

Use of Conditional Assembly in Macros
Conditional assembly is used primarily in macros. The main body of the program is usually
structured such that, once it is written, few changes will need to be made. Macros, however,

are designed to examine their parameters, and make decisions which may vary with
programming and run-time conditions.

One use of conditional assembly in macros is to assemble statements only upon the first
invocation of the macro. For example, an error will occur if a string variable is defined more
than once; the following structure may be used to check for previous definitions.

IF \DEF(STRI) ; IF STRI HAS NOT BEEN DEFINED
STRING STRI(100) ; DEFINE STRI OF 100
ENDIF

These instructions will determine whether or not the string variable STRI has been defined
previously. If it has not, the statement STRING STRi{100), which defines a string variabie
named STRI of 100 characters, is assembled.

Another use of conditional assembly in macros is to verify that a symbol has previously been
declared as a global symbol.

MACRO CALLPRINT

IF \DEF(PRINT) ; If PRINT has not been defined yet...
GLOBAL PRINT ; Define PRINT as a global

ENDIF ; Continue with rest of macro

LD A, "¢ ; Move first parameter to 4

LD BC, '2' ; Move second parameter to BC

CALL PRINT

ENDM

The conditional block in this macro checks if PRINT has been defined as a global symbol. If
PRINT has not been defined, the statement GLOBAL PRINT is assembled. If PRINT has been
defined previously, the statement in the conditional block is skipped.

REV A FEB 1981 9-39

Conditional Assembly Programming Examples—8500 MDL A Series Assembler Users

Assembly Based on Relative Memory Locations

Conditional assembly can also be used to keep track of the relative distance between bytes of
memory; this information may then be used to decide which instructions to assemble. For
example, the Z80 JR (jump relative) instruction will not allow a jump of more than 128 bytes.
The relative distance between bytes must be less than +128 and greater than -127. If the
range is exceeded, a warning will be issued. The following example checks to see if the
relative distance between the location counter and the jump address is within the specified
range. If it is, the JR instruction is assembled: if not, the JP instruction, which has no range
restriction, is assembled.

IF DEF (LABEL) ; If the label is not a forward reference
IF (($-LABEL) > -127) & (($-LABEL) < +128) ; and it's near
JR LABEL ; do a JR

ELSE ; Not close enough, so tell user..
WARNING ; JR RANGE EXCEEDED. JP INSTRUCTION USED INSTEAD

JP LABEL ; and generate the JP

ENDIF

ELSE ; Forward reference?

gﬁDIF LABEL ; Always a JP (can't tell where it is)

This conditional biock may be inserted into a macro and invoked when the jump instruction is
needed. When the macro is assembled and executed, the correct jump instruction will be
assembled into the object file.

NAME MAINPRO

MACRO JUMP ; BEGINS MACRO JUMP DEFINITION
IF DEF('1")

IF (($=-11") > =127) & (($-"1') < +128)

JR 1

ELSE

WARNING ; JR RANGE EXCEEDED. JP INSTRUCTION USED
JP 1

ENDIF

ELSE

JP AR

ENDIF

ENDM ; END OF MACRO DEFINITION

JUMP LABEL ; INVOKES THE MACRO JUMP WITH THE PARAMETER "LABEL"

9-40 _ REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users Using the '@’ Construct within Macros

USING THE '@’ CONSTRUCT WITHIN MACROS

This example illustrates the use of the ‘@’ (at) construct in macros. Each time a macro is
invoked, any ‘@’ construct appearing in the macro body is replaced with a unique four-
character value. When this value is appended to a one-to-four character symbol within the
macro body, a unique five-to-eight character label is created. With this construct, you can
use a label symbol within a macro. Even though the macro is invoked more than once, the
label symbol is unique for each invocation.

The example shown here is a delay loop that uses the ‘@’ construct for two separate label

le Fumm $himiinle dlhic camara ia imanl [FENT FENT a gt a
Symb(‘)lb. Even tnougn tnisS macio is invoked more than once, DEL1 @ and DEL2 @' will be

unique each time the macro is invoked.

The number of delay loops (0O to OFFH) is passed to the macro DELAY as the single parameter.

This example uses the 8080A/8085A instruction set, but similar techniques can be applied
10 MOSt processors.

Delay Loop Macro

MACRO DELAY ; line 1
MVI H, "1 ; line 2
DEL2'@’ MVI L,OFFH ; line 3
DEL1'@’ DCR L » ; line 4
JNZ DEL1'@! ; line 5
DCR H ; line 6
JNZ DEL2'@! ; line 7
ENDM ; line 8

Line 1 defines the beginning of the macro and names it DELAY.

Line 2 is an assembly language instruction that moves the value of the parameter (number of
delay loops) to the H register.

Line 3 moves the value OFFH inio the L regisier. The label DEL2'@’ is replaced by a unique
eight-character symbol each time the macro is invoked.

Line 4 decrements the L register. The iabei DEL1'@’ is replaced by another unique symbol.
Line 5 tests the L register. If it is not zero, the program jumps to the DCR L (line 4)
instruction. When the L register becomes zero, the program proceeds to the instruction DCR
H (line 6).

Line 6 decrements the H register (the number of delay loops requested).

Line 7 tests the H register. If it is not zero, the program jumps to the MVI L,OFFH instruction

{line 3), thus repeating the DEL1’'@" loop the number of delay loops requested. When the H
register becomes zero, the macro is terminated.

REV A FEB 1981 9-41

The Assembler INCLUDE Directive Programming Examples—8500 MDL A Series Assembler Users

Macro Invocation
DELAY 10H ; SHORT DELAY

DéLAY OFFH ; LONG DELAY

In this example, the first time macro DELAY is invoked the number of delay loops is 10H. The
label symbols DEL2'@’ and DEL1'@’ represent one set of address values. When DELAY is
invoked again with OFFH delay loops requested, DEL2'@’ and DEL1'@’ represent another set
of addresses.

THE ASSEMBLER INCLUDE DIRECTIVE

This example illustrates some uses of the INCLUDE directive. The INCLUDE directive causes
the assembler to process statements from the specified file as though they were a part of
your source file.

Frequently used blocks of code and macro definitions may be stored in files. These
statements may be included in programs when needed, by simply entering the INCLUDE
directive and the filespec of the file. The contents of the file is then assembled into the object
module.

This example illustrates four ways in which the INCLUDE directive may typically be used: (1)
defining constants, (2) defining COMMON sections, (3) defining macros, and (4) providing
authorship notices in your listings.

Including Constant Declarations

If you're using the same set of constants for a number of programs, you may store them in a
file. You can INCLUDE them in your program, where they'll be processed with your source
statements at assembly time. This feature can save you a great deal of time. For example, a
file named CNST.ASM contains the constant definition block listed below.

nATTa ot i} ls¥a) - MNafiman LR oW Ty A
ROWS EQU 20 ; Defines the number of rows

COLS EQU 15 ; Defines the number of columns

The main program, which uses this block of constants, is shown below.

NAME MAINPRO

INCLUDE "CNST.ASM"™ ; Constant definitions
MVI B, ROWS ; Number of rows to B
MVI Cc,COLS ; Number of columns to C

TABLE BLOCK RCWS¥COLS ; Allocates space for a 300-byte table.

9-42 REV A FEB 1981

Programming Examples—=8500 MDL A Series Assembler Users The Assembler INCLUDE Directive

f

When the program MAINPRO is assembied, the constant definitions are included and the
program looks like this.

NAME MAINPRO
INCLUDE "CNST.ASM"

ROWS EQU 20 ; Defines the number of rows
COLS EQU 15 ; Defines the number of columns
MVI B, ROWS ; Number of rows to B

MVI Cc,COLS ; Number of columns to C

TABLE BLOCK ROWS¥COLS ; Allocates space for a 300-byte table

Including COMMON Declarations

A group of COMMON statements is usually used in more than one program. You may store
these statements in a file and include them in the various programs that require the same
COMMON declarations.

A file named COMM ASM contains the COMMON declarations for the program MAINPRO.

COMMON CUSTOMER ; Defines a COMMON section named CUSTOMER
CNAME BLOCK 30 Reserves 30 bytes for CNAME
ADDRESS BLOCK 30 Reserves 30 bytes for ADDRESS
CITY BLOCK 16 Reserves 16 bytes for CITY
STATE BLOCK 2 Reserves 2 bytes for STATE

we e e ae

MAINPRO is the program which uses the COMMON declarations from the file COMM.ASM.

NAME MAINPRO
INCLUDE "COMM.ASM" ; Defines the COMMON section

When MAINPRO is assembled, the object module will contain the COMMON declarations as
follows:

NAME MAINPRO
INCLUDE "COMM.ASM"
COMMON CUSTOMER
CNAME BLOCK 30
ADDRESS BLOCK 30
CITY BLOCK 16
STATE BLOCK 2

Defines a COMMON section named CUSTOMER
Reserves 30 bytes for CNAME

Reserves 30 bytes for ADDRESS

Reserves 16 bytes for CITY

Reserves 2 bytes for STATE

e e we we e

REV A FEB 1981 9-43

The Assembler INCLUDE Directive Programming Examples—8500 MDL A Series Assembler Users
e e e———

The INCLUDE Directive in Macros

The INCLUDE directive can be very helpful in assembly language programming. A frequently
used macro may be defined in a file for later invocation.

In this example, file MABC.ASM contains the macro definition to be included in the program
MAINPRO. The BYTE directive has a parameter which will be given when the macro is

invoked.
MACRO ABC ; Beginning of macro definition
BYTE 't ; Generate a byte of the first parameter
WORD 40 ; Generate a word containing 40
ENDM ; End of macro definition

MAINPRO, the program which includes the file MABC.ASM for its macro definition, is listed

below.
NAME MAINPRO
INCLUDE "MABC.ASM" ; INCLUDEs the definition for macro ABC
ABC 5 ; Invokes ABC with a parameter of 5

ABC 15 ; Invokes ABC with a parameter of 15

Once the macro has been INCLUDEd in MAINPRO, each invocation of macro ABC will cause
the macro to be expanded at assembly time.

Authorship and Copyright Notices for Listings

The INCLUDE directive may also be used to print authorship and copyright notices on
program listings.

Let’s say that a file named CPYR.ASM contains the heading information that you wish to
place on each program listing.

9-44 REV A FEB 1981

Programming Examples—8500 MDL A Series Assembler Users The Assembler INCLUDE Directive

;**&*************

. ¥ *
?

3 ¥ COPYRIGHT (C) 1980 BY *
;* *
;**
;* *
;i EEXERXX X * * * *
;* * * * *
;* * EX 21 * * XX ER * % % % FRER EERER E I * *
;* * * * * ¥ * * * * % * ¥ * % e *
;* * XXX * %% * * * * * * % * . R . *
;* * * * * * * * * % *¥ %X % . *
;* * EREXRERRE * XXX ¥ XXX * * % % * *
;* *
A COMMITTED TO EXCELLENCE *
;* *
;**!********************!******i*******************i*********************
;* *
;: TEKTRONIX, INCORPORATED, BEAVERTON, OREGON 97077 ¥
. *
b

;: ALL RIGHTS RESERVED *
. *

’
;**
;**&*******

. % *
H

i * AUTHOR: KEN DEDATE *
% *

’
;**

By using a single statement, INCLUDE “CPYR.ASM”, your assembler listing will take the
following format.

NAME MAINPRO

INCLUDE "CPYR.ASM"
R e e e e e At A At s i il

i ¥ *
;¥ COPYRIGHT (C) 1980 BY %
;¥ *
;**
;* *
;* XEXEXER * * * *
;* * * * *
;* * * %% * * EXXX * % %% %*% %% EZ X X3 * % * *
;¥ * * * % * * % ¥ % * % X % *
¥ * EKEXX X %% * * * LR t 2R * . R . *
;¥ E 2 ¥ % * * * * % E 2R SR N *
;* * XEREXRXXR * *%% ¥ EXER * ®* ¥ ¥ * *
;* *
;¥ COMMITTED TO EXCELLENCE i
%
;**!***************************
;* x
;¥ TEKTRONIX, INCORPORATED, BEAVERTON, CREGON 97077 :
. ¥

H

;¥ ALL RIGHTS RESERVED *
- % *

’
R EEE R EEEE R R R R R E R R E R R R R R AR XX R R R R AR R XN R R R AR RN R R XXX RRE R
;***E***i**

) *
;* AUTHOR: KEN DEDATE *
. % *

’
;**i*************************

REV A FEB 1981 9-45

8500 MDL A Series Assembler Users

Table
No.

10-1
10-2
10-3
10-4
10-5
10-6

REV A FEB 1981

Section 10

TABLES

Page
Source Module Character Setooiiinii i, 10-1
Assembler DireCtivesttt 10-3
ASCIlI Codes (Hexadecimal)c.ooiiiniin i, 10-5
Decimal-Hexadecimal-Binary Equivalents 10-6
Hexadecimal Addition i . 10-7
Hexadecimal Multiplication i 10-8

10-i

8500 MDL A Series Assembler Users
—

Section 10
TABLES

Table 10-1
Source Module Character Set

Symbols Definition

A.Z letters used in symbols; lowercase characters (other than in strings and
comments) are interpreted as the corresponding uppercase characters

0.2 numbers used in symbols and constants

$ used in symbols, and to represent assembler location counter contents
used in symbols

precedes a comment

,(comma) delimiter for operand items

" string delimiter

string concatenation operator

! string substitution delimiter

total number of arguments passed to current macro expansion
[1] treat everything within brackets as a single argument

@ provide unique labels for each macro expansion

% replaced by name of current section in a macro expansion

* binary arithmetic operation, multiplication

/ binary arithmetic operation, division

+ unary or binary arithmetic operator, addition

- unary or binary arithmetic operator, subtraction

() override precedence of operators

REV A FEB 1981 10-1

Source Module Character Set Tables—8500 MDL A Series Assembler Users

Table 10-1 (cont)

Symbols Definition
\ unary logical operator, NOT
& binary logical operator, AND

! binary logical operator, inclusive OR

1" binary logical operator, exclusive OR

SPACE field delimiter

TAB field delimiter

CARRIAGE field and line delimiter

RETURN

AN allow following special character to have literal meaning
AN allow the second up-arrow character to have literal meaning

= relational operator, equal

<> relational operator, not equal

> relational operator, greater than

< relational operator, less than

>= relational operator, greater than or equal
<= relational operator, less than or equal

10-2 REV A FEB 1981

Tables—8500 MDL A Series Assembler Users Assembler Directives

PP —————

Table 10-2
Assembler Directives

Directive Operation

ASCII generates ASCIl data

BLOCK reserves a data block

BYTE generates byte(s) of data

COMMON declares program section, assigns name, defines type to be common
ELSE when the expression in the IF statement is false (zero), causes assembly

of alternate source lines between ELSE and ENDIF directives

END marks the end of an assembly source module

ENDIF marks the end of an IF block

ENDM marks the end of a macro

ENDR marks the end of a REPEAT block

EQU assigns a value to a symbol(s)

EXITM terminates macro expansion before the ENDM

GLOBAL declares global symbol

iF when expression is true {non-zerc), causes assembly of scurce lines
between IF and ENDIF (or ELSE, if present) directives

INCLUDE inserts text from another source file

LIST turns on assembler listing options

MACRO defines the beginning of a macro source block
NAME declares object module name

NOLIST turns off assembler listing options

NRG assigns an address tn the assemble: Incation counter
PAGE advances listing to a new page

REPEAT causes source statements to be assembled repeatediy

REV A FEB 1981 10-3

Assembler Directives

10-4

Tables—8500 MDL A Series Assembler Users

L

Table 10-2(cont)

Directive Operation

RESERVE reserves a work space section

RESUME resumes the definition of a section
SECTION declares a program section, assigns name
SET assigns or reassigns a value to a variable
SPACE inserts blank lines in listing

STITLE creates a listing page subtitle

STRING declares a string variable

TITLE creates a listing page title

WARNING displays a warning message

WORD generates word(s) of data

REV A FEB 1981

Tables—8500 MDL A Series Assembler Users ASCIl Codes (Hexadecimal)

Table 10-3
ASCIl Codes (Hexadecimal)

HIGH-ORDER BITS

0 1 2 3 4 5 6 7
CONTROL SYMBOLS UPPERCASE LOWE RCASE
LOW- 0] NUL | DLE SP] @ P N)
ORDER
BITS 1 | soH | pC1 ! 1 A Q a q
2] sTX | DC2 " 2 B R b r
3| ETX | DC3 # 3 c s c s
4 | EOT | DC4 $ 4 D T d t
5 | ENQ | NAK % 5 E u e u
6 | ACK | SYN & 6 F v f v
7 | BEL | ETB ’ 7 G w g w
seLL
8 ”BS CAN (8 H X h x
9] HT EM) 9 | Y i y
A LF suB * : J z j z
B vT ESC + ; K [k {
C FF FS , < L \ 1 !
D _CR GS - = M] m 1
E | sO RS > N A n ~
F l sl L us l / i ? I (o] % _ o EZEL

REV A FEB 1981 10-5

Decimal-Hexadecimal-Binary Equivalents Tables—8500 MDL. A Series Assembler Users

e]}

Table 10-4
Decimal-Hexadecimal-Binary Equivalents

Hexa-| Binary Hexa-| Binary Hexa-| Binary Hexa-| Binary
Deci- | deci- 8-bit Deci- | deci- 8-bit Deci- | deci- 8-bit Deci-| deci- 8-bit
mal mal Code mal mal Code mal mal Code mal mal Code
0 00 | 0000 0000 64 40 | 0100 0000 128 80 1000 0000 192 CO0 | 1100 0000

01 0000 0001 65 41 0100 0001 129 81 1000 0001 193 Cc1 1100 0001
2 02 | 0000 0010 66 42 | 0100 0010 130 82 1000 0010 194 C2 | 1100 0010
3 03 | 0000 0011 67 43 | 0100 0011 131 83 | 1000 0011 195 C3 | 1100 0011
4 04 | 0000 0100 68 44 101000100 132 84 | 10000100 196 C4]1100 0100
5 05 | 0000 0101 69 45 | 0100 0101 133 85 | 1000 0101 197 C5 | 1100 0101
6
7
8
9

06 | 00000110 70 46 | 0100 0110 134 86 1000 0110 198 C6 | 11000110
07 {0000 0111 71 47 | 0100 0111 135 87 1000 0111 199 C7 {1100 0111
08 | 0000 1000 72 48 | 0100 1000 136 88 1000 1000 200 C8 | 1100 1000
09 0000 1001 7 49 | 0100 1001 137 89 1000 1001 201 C9 | 1100 1001
10 0A | 0000 1010 74 4A | 0100 1010 138 8A | 1000 1010 202 CA | 1100 1010
11 0B | 0000 1011 75 4B | 0100 1011 139 8B | 1000 1011 203 CB | 1100 1011
12 0C | 0000 1100 76 4C | 0100 1100 140 8C | 1000 1100 204 CC | 1100 1100
13 0D | 0000 1101 77 4D | 0100 1101 141 8D | 1000 1101 205 CD {1100 1101
14 OE 0000 1110 78 4E | 0100 1110 142 8E_[1000 1110 206 CE }11001110
15 OF | 0000 1111 79 4F [0100 1111 143 8F | 1000 1111 207 CF } 1100 1111
16 10 [0001 0000 80 50 | 0101 0000 144 90 1001 0000 208 DO | 1101 0000
17 11 0001 0001 81 51 0101 0001 145 91 1001 0001 209 D1 1101 0001
18 12 | 0001 0010 82 52 | 0101 0010 146 92 1001 0010 210 D2 | 1101 0010
19 13 | 00010011 83 53 | 0101 0011 147 93 1001 0011 211 D3 111010011
20 14 | 0001 0100 84 54 | 0101 0100 148 94 | 1001 0100 212 D4 | 1101 0100
21 15 | 0001 0101 85 55 | 0101 0101 149 95 1001 0101 213 D5 | 11010101
22 16 | 0001 0110 86 56 | 0101 0110 150 96 | 1001 0110 214 D6 | 1101 0110
23 17 | 0001 0111 87 57 | 0101 0111 151 97 1001 0111 215 D7 | 11010111
24 18 | 0001 1000 88 58 | 0101 1000 152 98 1001 1000 216 D8 | 1101 1000
25 19 | 0001 1001 89 59 | 0101 1001 153 99 1001 1001 217 D9 | 1101 1001
26 1A | 0001 1010 90 5A | 0101 1010 154 9A | 1001 1010 218 DA | 1101 1010
27 1B {0001 1011 91 58 | 0101 1011 155 9B {1001 1011 219 DB | 1101 1011
28 1C | 00011100 92 5C | 01011100 156 9C | 1001 1100 220 DC | 1101 1100
29 1D | 0001 1101 93 5D | 0101 1101 157 9D | 1001 1101 221 DD | 1101 1101
30 1E 0001 1110 94 5E {0101 1110 158 9E {1001 1110 222 DE | 1101 1110
31 1F | 0001 1111 95 S5F | 0101 1111 159 9F {1001 1111 223 DF | 1101 1111
32 20 | 0010 0000 96 60 | 0110 0000 160 AQ | 1010 0000 224 EO | 1110 0000
33 21 0010 0001 97 61 0110 0001 161 Al 1010 0001 225 E1 1110 0001
34 22 100100010 98 62 | 0110 0010 162 A2 110100010 226 E2 | 11100010
35 23 100100011 99 63 | 0110 0011 163 A3 | 1010 0011 227 E3 | 1110 0011
36 24 | 0010 0100 100 64 | 0110 0100 164 A4 | 1010 0100 228 E4 | 1110 0100
37 25 0010 0101 101 65 | 01100101 165 A5 | 1010 0101 229 E5 | 11100101
38 26 10010 0110 102 66 | 01100110 166 A6 | 10100110 230 E6 | 11100110
39 27 100100111 103 67 101100111 167 A7 10100111 231 E7 111100111

40 28 00101000 104 §8 ;0110 100C 188 A 1010 1000 232 Eg | 11101000

41 29 10010 1001 105 69 | 0110 1001 169 A9 | 1010 1001 233 E9 | 1110 1001
42 2A | 0010 1010 106 6A | 0110 1010 170 AA 11010 1010 234 EA | 1110 1010
43 2B | 0010 1011 107 6B | 0110 1011 171 AB {1010 1011 235 EB {1110 1011
44 2C 0010 1100 108 6C {0110 1100 172 AC 11010 1100 236 EC |1110 1100
45 2D {0010 1101 109 6D | 0110 1101 173 AD | 1010 1101 237 ED | 1110 1101
46 2E {0010 1110 110 6E | 0110 1110 174 AE | 1010 1110 238 EE | 1110 1110
47 2F 10010 1111 111 6F | 0110 1111 175 AF | 1010 1111 239 EF {1110 1111
48 30 |0011 0000 112 70 | 0111 0000 176 BO | 1011 0000 240 FG | 1111 0000
49 31 0011 0001 113 71 0111 0001 177 B1 1011 0001 241 Fi1 1111 0001
50 32 | 00110010 114 72 | 0111 0010 178 B2 | 10110010 242 F2 | 11110010
51 33 00110011 115 73 [01110011 179 B3 | 1011 0011 243 F3 | 11110011
52 34 | 00110100 116 74 | 0111 0100 180 B4 | 1011 0100 244 F4 111110100
53 35 |0011 0101 117 75 | 01110101 181 B5 | 10110101 245 F5 | 11110101
54 36 10011 0110 118 76 [01110110 182 B6 |10110110 246 F6 | 11110110
55 37 | 00110111 119 77 | 0111 0111 183 B7 | 10110111 247 F7 11110111
56 38 10011 1000 120 78 | 0111 1000 184 B8 | 1011 1000 248 F8 | 11111000
57 39 100111001 121 79 | 01111001 185 B9 | 1011 1001 249 F9 | 11111001
58 3A | 00111010 122 7A {1 01111010 186 BA | 10111010 250 FA 111111010
59 3B 100111011 123 7B | 0111 1011 187 BB | 1011 1011 251 FB | 11111011
60 3C |0011 1100 124 7C | 0111 1100 188 BC | 10111100 252 FC | 11111100
61 3D 00111101 125 7D {0111 1101 189 BD | 1011 1101 253 FD | 1111 1101
62 3E {0011 1110 126 7E 01111110 190 BE | 10111110 254 FE | 11111110
63 3F {0011 1111 127 7F 10111 111 191 BF | 10111111 255 FF 1111 1111

10-8 REV A FEE 1981

Tables—8500 MDL A Series Assembler Users Hexadecimal Addition

RN e

Table 10-5
Hexadecimal Addition

10
10| 11
10 | 11 | 12
1011 112 | 13
11112 {13 | 14
1 1 14 | 15
10111112 13114 | 15| 16
11 1121314115 |16 | 17
12113 |14 156116 |17 | 18
13114 | 15[16|17 |18] 19
14 115116} 171 18 | 19 | 1A
15116 | 17| 18 19 [1A | iB
16 117 {18 19| 1A | 1B | 1C
17 [18 {191 1A 1B [1C | 1D
18 |19 | 1A 1B| 1C | 1D | 1E

m|mjo
M

nm|O|O | | >f©
Z(S|mim|o|o|m

Mim|O[O|m@|>>|© o]~

mm|O|O|m|X>>|©|0w]|~|o

MO0 X ©olo|~|oon

sy
o

—h
—

e
N

2|3 mim|o|o|m|3»|w©]|o|~|o|orfl~

ol m[m|o|O|m| > |w|w]|~ o o |af

O|O|m| »|w|o|~|om o] |wn|=

g
w

T MO|IO|m| >|©|o|~o|{o|s|w|rol|—=
o/ M| OOl m| 3>| @] |~|o| o} |w]r

—
E-N

EXAMPLE HEX F+8 = 17
HEX 10 = 16 DEC
HEX 7 = _7 DEC
HEX 17 = 23 DEC

REV A FEB 1981 10-7

Hexadecimal Multiplication Tables—8500 MDL A Series Assembler Users

Table 10-6
Hexadecimal Multiplication

1| 213lals]6l7 9o A/B|CIDJEIF]
1 [1 { 23451617 9 | A|[B|C|DJE]F
2 2 4|68 |A|C[E 12| 14| 16 [18 [1A[1C[1E
3 | 3] 69 [C|F[12]15 1B 1E | 21 | 24| 27 | 2A [2D
4 | 4] s|Ccl10[1a]18][1C 24 | 28 | 2C [30 | 34 [38 | 3C
5 | 5| A|F|14]19|1E| 23 2D | 32 | 37 |3C| 41 | 46 | 4B
6 | 6 | C 1218 1E |24 |2A 36 | 3C | 42 | 48 | 4E | 54 | 5A
7 | 7 | E [15]1C| 23 [2A [31 3F | 46 | 4D | 54 | 5B | 62 | 69
8 | 8 | 10 18] 20| 28 [30 | 38 48 [50 | 58 | 60 | 68 | 70 | 78
51 | 5A | 63 |6C | 75 | 7E | 87
A || A| 14|1E[2832 |3C[46 5A | 64 | 6E | 78 | 82 | 8C | 96
B || B | 16 | 21| 2C| 37 | 42 [4D 63 | 6E | 79 | 84 | 8F | 9A| A5
C [C [18] 24| 30|3C|48 54 6C| 78 | 84 |90 | 9C | A8 | B4
D | D | 1A[27]| 34| 41 | 4E | 5B 75 | 82 | 8F |9C| A9 | B6 | C3
E | E | 1C|2A[3846|5462 7E |8C | 9A | AB| B6 | C4| D2
F || F | 1E|2D| 3C| 4B | 5A | 69 87 | 96 | A5 | B4 | C3 | D2 | E1
EXAMPLE HEX 9x8 = 48

HEX 40 = 64 DEC

HEX 8 = _8 DEC

HEX 48 = 72 DEC

10-8 REV A FEB 1981

8500 MDL A Series Assembler Users
—

Section 11

TECHNICAL NOTES

This section is reserved for technical information about the Tektronix Assembler, Linker, and
Library Generator (LibGen). At the time of this writing, no technical notes are included.
Technical notes will be incorporated into later versions of this manual, as necessary.

REV A FEB 1981 11-1

8500 MDL A Series Assembler Users

m

Section 12

ASSEMBLER SPECIFICS

Processor-specific information is contained in the Assembler Specifics supplement that
accompanies each assembler. Each supplement is designed as a subsection to this manual.

These Assembler Specifics supplements are numbered as if they were separate sections of
this manual. For example, the 8080A/8085A supplement is labeled "Section 12A,” and the
first illustration is numbered “Fig. 12A-1.” Similarly, other supplements are labeled Sections
12B, 12C, etc. Figures, pages, and tables are numbered accordingly.

Each subsection presents the following information: .

e A demonstration run that parallels the one given for the 8080A/8085A in the Learning
Guide of this manuai.

® A brief summary of the processor’'s addressing modes and registers.

® A list of notational conventions used to describe the instruction set.

® The microprocessor instruction set in a notation acceptable to the given assembler.
® A list of reserved words for the given assembler.

® The page size for the assembler, as defined in the Linker section of this manual.
® Any processor-specific assembler error messages.

® Any irregularities that should be noted.

REV A FEB 1981 12-1

Error Messages—=8500 MDL A Series Assembler Users

#

Section 13

ERROR MESSAGES

INTRODUCTION

This section lists the assembler error messages in numeric order. The assembler error
messages with numbers above 91 are described in the Assembler Specifics section for your
microprocessor. Refer to the Linker section for the linker error messages and to the Library
Generator section for the LibGen error messages. Each error message is followed by a
description of possible causes. ’

**»*x+ ERROR 001:. (No message) This error is generated by a user-specified WARNING
directive. For more information, see the WARNING directive in the Assembler Directives
section of this manual.

++x ERROR 002: Symbol already defined. A symbol has been redefined. This error may
occur if the same symbol is equated to two different values (with EQU directives) or if two
different instructions have the same label.

*»*xxx ERROR 003: Symbol value Phase Error. There is a difference between pass 1 and
pass 2 in the value or section number of a label or symbol. This message may be caused by a

SET directive with a forward reference.

*xxxx ERROR 004: lllegal EQU of GLOBALs. An unbound global has been assigned the
value of another unbound global (with the EQU directive).

**»xx» ERROR 005: Global definition may not use HI, LO, or ENDOF. The values of Hi, LO
or ENDOF have been assigned to a global symbol. This error may occur when a global symbol
is equated to HI{x) or LO(x), where x is an address; or ENDOF(y), where y is section name
whose ending address is yet to be found. '

*+xxxx ERROR 006: String expression required. A numeric value appears where a string is
required. Concatenation, SEG or NCHR functions, and ASCII, TITLE, or STITLE directives all
require string operands.

REV A FEB 1981 13-1

Error Messages—8500 MDL A Series Assembler Users
L e Y

¥ ERROR 007: Undefined BLOCK or ORG expression. The operand of an ORG or
BLOCK directive is either undefined or a forward reference. This error may occur if a
misspelled or undefined symbol appears in an ORG or BLOCK directive, or if these directives
reference a symbol that has not yet been assigned a value.

***** ERROR 008: Invalid ORG out of section. The section of an ORG expression is either
not a scalar or not an address within the current section. This error may occur if a misspelled
or invalid symbol is used within an ORG expression or if a SECTION or RESUME statement is
missing.

x ERROR 009: Negative block length. The BLOCK operand is either negative or greater
than 32767.

***** ERROR 010: Macro already defined. The same name appears in two or more
MACRO directives.

***** ERROR 011: Macro definition phase error. There are two possible errors: the macro
has been called before being defined, or the macro has been defined in the second (but not
the first) pass of the assembler. This error may be caused by a forward reference used with a
SET directive.

***¥¥ ERROR 012: Memory full on Macro call. There is insufficient memory space to
perform macro expansion. This error may occur if no limit is set for macro recursion, if too
many symbols are used in a macro definition, or if too many actual parameters are specified.

¥x*x* ERROR 013: Missing ENDR or ENDIF. A conditional assembly (IF or REPEAT) biock

is not properly terminated. This error may occur if a conditional assembly block begins within
a macro definition. This error may also occur if a macro ends (with the ENDM directive)
before termination of conditional assembly (by the ENDR or ENDIF directive).

¥¥*x* ERROR 014: Duplicate definition of section name. A section name is already in use
as a symbol.

*****x ERROR 015: END directive invalid within an INCLUDE file. An END directive is
present within an INCLUDE file. See the Assembler Directives section in this manual for
information on INCLUDE files.

13-2 REV A FEB 1981

Error Messages—8500 MDL A Series Assembler Users

***** FRROR 016: ENDR or ENDIF mis-matched. An incorrect termination directive is
used on a conditional assembly block. This error may occur if an ENDR is used to terminate a
IF block, if an ENDIF is used to terminate a REPEAT block, or if REPEAT and IF blocks overlap
each other.

**xx*x ERROR 017: lteration limit exceeded. An attempt has been made to assemble a
REPEAT block more than the number of times specified in the second parameter of the
REPEAT directive. If this parameter is not specified, the error message is displayed after 256

nnnnn cles are completed.

ve!
repeat cycies are compie

**xx* ERROR 018: Misplaced ELSE. Either an ELSE directive is outside an IF-ENDIF block,
or more than one ELSE directive is within an IF-ENDIF block.

**x*xx*x ERROR 019: Operation invalid for address. An operation requiring scalar operands
has been applied to an address value.

***x* ERROR 020: Divisor is zero. A division or a MOD operation attempted to use zero as
a divisor.

**xx* ERROR 021: Text following " ignored. The information following a bracketed macro
parameter has been ignored. For example, [BCIDE results in a parameter of BC (and
generates this error message). Refer to the Macro section of this manual for further
information on parameters.

x ERROR 022: ENDOF operand is scalar. The specified parameter of an ENDOF
function is a scalar or non-global symbol.

***xx ERROR 023: ENDOF already applied. An attempt has been made to perform an
ENDOF function upon an address resulting from a previous ENDOF function.

*»**x* ERROR 024: ENDOF operand is not global. The specified parameter of an ENDOF
function is a scalar or non-global symbol.

***xx ERROR 025: Operation on HI or LO of address. An attempt has been made to add or
subtract the result of a Hl or LO function.

REV A FEB 1981 13-3

Error Messages—8500 MDL A Series Assembler Users

**xxx ERROR 026: Addition of addresses. An attempt has been made to add two
addresses.

»* ERROR 027: Conflicting section bases. An attempt has been made to subtract or
compare addresses based on different sections.

*****x ERROR 028: Address subtracted from scalar. An attempt has been made to subtract
an address from a scalar value.

***** ERROR 029: Negative string length. A declaration in the STRING directive specifies
a maximum length that is either negative or greater than 32767.

***** ERROR 030: String length phase error. The declared length in the STRING directive
differs between the first and second assembler passes. This error may be caused by a SET
directive with a forward reference.

*xx*x ERROR 031: Redeclaration of string variable. An attempt has been made to
redeclare a string variable. This error may occur if a STRING directive is inside a REPEAT
loop or inside a macro which is expanded more than once.

***** ERROR 032: String declaration phase error. A string value has been defined during
the second assembler pass but not during the first pass. This error may be caused by a SET
directive with a forward reference.

***** ERROR 033: Invalid string name. An invalid symbol is used as a string variable name
in a STRING directive. See the Assembler Directives section for more information on the
STRING directive.

****> ERROR 034: END inside an unclosed block. An END statement occurs within an IF
block, a REPEAT block, or a MACRO definition block. This error may occur if the ENDM,
ENDR, or ENDIF directives are either missing or misspelled.

*¥**** ERROR 035: Value truncated to byte. The value entered exceeds one byte (allowable
range -128 to +255). The value is truncated to fall within this range.

¥**** ERROR 036: Invalid character follows label. A label has not been followed by a
space or tab character.

13-4 REV A FEB 1981

Error Messages—=8500 MDL A Series Assembler Users
[T S

***»x* FRROR 037: Extra operands ignored. One or more extra operands appear in a
statement. The statement is assembled and the extra operands are ignored. This error may
occur if a statement is miscoded, if an invalid delimiter is used for an operand list, or if a
semicolon does not precede a comment. This error may also occur if an invalid character
occurs within a symbol (for example, AB%C).

*x*xx* ERROR 038: String variable used as label. A string variable is present in the label
field of a statement other than a SET directive. The label field is ignored.

**xxx FRROR 039: Invalid operation code. The assembler is unable to recognize or process
a symbol! or character in the operation field of a statement. This error may occur if an
operation is misspelled, if a macro invocation precedes its definition, or if an invalid delimiter
follows a label.

»»xxx FRROR 040: Invalid character. A character not in the assembler character set has
been used outside of double quotes. Refer to the “"Source Module Character Set” in the
Tables section of this manual.

***** FRROR 041: Syntax error. A statement does not conform to the required syntax.
Refer to the Language Elements section of this manual for the correct syntax.

*x*x*x ERROR 042: Invalid option or separator. An invalid delimiter has been used between
listing control options in the LIST or NOLIST directive operand field. Spaces are not valid
delimiters. This error may occur if spaces are used in place of commas to delimit the options,

or if an invalid listing control option is used.

*x*x* ERROR 043: No label on EQU or SET. An EQU or SET directive has a missing or
invalid label field.

***** ERROR 044: Invalid macro name. A macro name is missing or invalid. The macro
body is ignored. This error may occur if the macro name is already defined or if an invalid
delimiter is used before the macro name.

***** ERROR 045: Invalid relocation option. An invalid relocation option has been used in
a section directive. (Valid options are: PAGE, INPAGE, and ABSOLUTE.) The assembler
ignores the invaiid option and assumes the section to be byte-reiocatabie. This error may
occur if the option is misspelled or is not preceded by a comma.

REV A FEB 1981 13-5

Error Messages—8500 MDL A Series Assembler Users

***¥** FRROR 046: MACRO within a macro. A MACRO directive occurs within a macro
definition block. The MACRO directive is ignored.

***x*» ERROR 047: Invalid except in Macro. An EXITM, ENDM, REPEAT, or ENDR directive
appears outside of a macro definition block.

¥*x**x ERROR 048: Invalid operand. The specified operand is either incomplete or
inaccurate for the BYTE, WORD, ASCII, BLOCK, ORG, or TITLE directives.

**x*x ERROR 049: Address assigned to string. An attempt has been made to assign an
address value to a string variable.

x ERROR 050: Section definition Phase error. The specified section relocation option
differs between pass 1 and pass 2. This error may occur if a SET directive has a forward
reference.

****x ERROR 051: Section definition Phase error. The specified section is defined during
the second, but not the first, pass of the assembler. This error may occur if a SET directive
has a forward reference.

***** ERROR 052: Too many Sections or Globals. The number of declared sections and
other global symbols exceeds 254 during the processing of a SECTION directive. The current
section declaration is not accepted by the assembler.

**xx* ERROR 053: Invalid relocation option. An ABSOLUTE relocation option has been
specified within a RESERVE directive operand field.

***** ERROR 054: Negative RESERVE length. The RESERVE operand is either negative or
greater than 32767.

¥*xxx ERROR 055: Invalid section name. An invalid symbol has been declared as a
SECTION, COMMON, or RESERVE name. This error may occur if a section name is
misspelled, contains invalid characters, or is a previously defined label or reserved word.

13-6 REV A FEB 1981

Error Messages—8500 MDL A Series Assembler Users

E

»+xxx ERROR 056: Invalid RESERVE length. The required RESERVE expression is either
specified incorrectly, specified without a comma before the expression, or missing from the
RESERVE directive.

sxxx* ERROR 057: RESUME section undefined. The resumed section has not been
previously defined with a SECTION or COMMON directive. This error may occur if the
parameters of the SECTION or COMMON directives are misspelled or use invalid characters.

*»*xx*+ ERROR 058: RESUME of RESERVE section. A RESUME directive has been used
with a RESERVE section name.

*x**»* ERROR 059: Resumed section invalid. A resumed section has been defined after the
number of declared sections and other global symbols exceeded 254. The section being
resumed is discarded.

xx+ ERROR 060: Global operand already defined. A global symbol has been defined
more than once. See the GLOBAL directive in the Assembler Directives section for correct usage
of global symbols.

»x+x»» ERROR 061: GLOBAL declaration Phase error. A global symbol has been used
before it is defined. This message may be caused by a SET directive with a forward reference.

*xxxx ERROR 062: Too many Sections and Globals. The number of declared sections and
other global symbols exceeded 254 during the processing of a GLOBAL directive. The current
global declaration is not accepted by the assembler.

*»»*x* ERROR 063: Invalid radix. An invalid radix follows a constant. The assembler
recognizes hexadecimal (H), octal (O or Q), and binary (B) constants, and defaults to decimal
when no radix is specified.

*xxx»x ERROR 064: Invalid digit. An invalid digit is a~sociated with a specitied radix. For
example. the binary number 10031B contains an inva.. ! digit (3).

=xxxx ERROR 065: Unmatched string or parameter delimiter. An opening quotation mark
or bracket is not matched by a closing quotation mark or bracket.

REV A FEB 1981 13-7

Error Messages—8500 MDL A Series Assembler Users
e NS

XK XXX

ERROR 066: Line too long after replacement. The expanded line {(containing single
quotes used as replacement indicators) is too long. Only 127 characters are allowed.

¥*x** ERROR 067: Extra replacement identifier. One or more characters follow the
replacement identifier (an item enclosed in single quotes) within a macro definition block. For
example, '#bug’ generates this error.

***** ERROR 068: Replacement invalid outside of macro. Replacement identifiers (# and
@) are used outside of a macro definition block.

WX KX

ERROR 069: Undefined replacement string. A symbol in single quotes (' ') is not yet
defined as a string.

***** ERROR 070: Invalid replacement identifier. An invalid symbol or symbols have been
used for the replacement specification. For example, '???’ is invalid.

x ERROR 071: Scalar value required. An address value has been used where a scalar
is required.

***** ERROR 072: Invalid expression. The expression is either invalid or incomplete for the
specified operation.

¥*¥*x ERROR 073: Section size Phase error. The number of bytes generated for this

anntiaem A o~ - — o
L

section during the first pass is noi ihe same as the number of bytes generated during the
second pass. This error may occur if a SET directive is used with a forward reference.

***** ERROR 074: Undefined symbol. No value has yet been assigned to a symbol used in
an expression.

***** ERROR 075: String truncated. More characters are assigned to a string than allowed
by its definition.

x ERROR 076: Negative SEG operand. The parameter of the SEG function is either
negative or greater than 32767.

13.8 REV A FEB 1981

Error Messages—8500 MDL A Series Assembler Users

B —

**xxx» FRROR 077: SEG starting operand is zero. The starting position parameter of the
SEG function is zero.

*xxxx ERROR 078: Insufficient workspace. An internal work area of the assembler is full.
This error may occur if string functions or conditional assembly leave insufficient memory to
perform the required functions.

***xx ERROR 079: Value too large. The operand of the SPACE directive exceeds 255.

***x*» ERROR 080: Invalid NAME symbol. The NAME symbol is invalid because it does not
begin with a letter.

***x*» ERROR 081: lllegally substituted ENDM. An ENDM directive within a macro
expansion precedes the normal macro ending.

***x* ERROR 082: Nested INCLUDE directive. The source code inserted into the program
with an INCLUDE directive contains another INCLUDE directive. See the Assembler
Directives section for information on the INCLUDE directive.

**x»x ERROR 083: Missing ENDIF. The ENDIF directive is missing from a conditional IF
block.

**x*x ERROR 084: Missing ENDM for included macro. The ENDM directive is missing
from a macro definition block.

**xxx ERROR 085: String vaiue too iarge. The length of a string used as a number exceeds
two characters.

**»»x» ERROR 086: Shift count exceeds 16. An attempt has been made (using SHL or SHR)
to shift mare than 16 bit positions in one operation

*xxxx ERROR 087: Too many symbols. The assembler symbol table is filled. This is a fatal
error; assembly is aborted. This error occurs when too many symbols have been used. The
source module must be divided into smaller pieces to permit assembly.

REV A FEB 1981 13-9

Error Messages—8500 MDL A Series Assembler Users
L~ "~

¥*x*** ERROR 088: Invalid transfer label. The label used for a transfer address on an END
directive is not an address defined in the current source module.

¥¥x*¥ ERROR 090: ENDOF function applied to a bound global. An ENDOF function has
been used with a bound global instead of a section.

¥¥¥** ERROR 091: Unable to assign INCLUDE file. DOS/50 is unable to access an
INCLUDE file. This occurs when an illegal filespec is specified. (For example, INCLUDE “LPT”
specifies a reserved device.) This error message is preceded by an SRB status code indicating
the reason that the specified file cannot be accessed. Refer to the Error Codes section of the
8550 System Users Manual for individual descriptions of the SRB status codes.

¥*¥** ERROR 092: lliegal operation on a global. An attempt has been made to assign a
value to a global symbol with the SET directive.

1310 REV A FEB 1981

8500 MDL A Series Assembler Users

—

Section 14

GLOSSARY

Absolute. Having a specified location in memory: not relocatable. An absolute address
specifies the actual location of a byte in memory.

Actual Parameter. See Parameter.

Address. A number or symbol that specifies a byte in memory. A 16-bit address has a vaiue
in the range O to 65535 (FFFF hexadecimal).

Assembler. The system program that translates assembly language programs into machine
language.

Assembly Language. A microprocessor-specific programming language that allows the
symbolic representation of any processor operation. Each operation is coded as one assembly
language statement.

Base. The base of a section of object code is the location of the first byte in the section.
Binary. The base 2 numbering system. A binary digit, or bit, has the value O or 1. A binary

constant in an assembly language program requires the suffix B. For exampie, the decimal
number 29 may be writien as 11101B.

Bound Global. See Global.

Brief Name. A temporarily defined shorthand name for a file, used as an alternative to a
complete filespec. The BRIEF command defines brief names.

Byte-Relocatable. See Relocatable.

Carriage Return. See Return.

Code. To translate a sequence of operations into a series of statements in a programming
language. The statements of a program are called source code. The machine instructions

produced by assembling source code are called object code.

Command File. A file containing commands to be processed by the operating system or by a
system program such as the linker or library generator.

REV A FEB 1981 14-1

Glossary—=8500 MDL A Series Assembler Users
T

Command File Invocation. A method of invoking the linker or library generator.

LINK @comfile or LIBGEN @comfile

invokes the linker or library generator and specifies that commands are to be read from the
designated command file rather than from the system terminal.

Comment. A source program line, or part of a line, that is ignored by the assembler.
Comments are used for program documentation. A semicolon (;) signifies that the rest of the
line is a comment.

Common. A section of memory that may be shared by any number of subprograms. The
assembler directive COMMON declares a common section. The linker assigns the same area
of memory to all common sections with the same name.

Concatenation. Connecting end-to-end. For example, the concatenation "FLIP”:"FLOP”
yields the string "FLIPFLOP”. The colon () is the concatenation operator used in assembly
language programs.

Conditional Assembly. A feature of the Tektronix Assembler that allows a block of source
code to be assembled many times or not at all, depending on conditions defined earlier in the
source module.

Constant. A value expressed in literal form rather than as a symbol. A numeric constant is
written as a string of digits, optionally followed by a letter that indicates the radix {(for
example, 29, 111018, 350, 1DH). A string constant is written as a character string in quotes
(for example, "TEXT”, “P.O. Box 500", "*).

Converter. A system program that translates an assembly language program written for
another assembler into a format suitable for processing by the Assembler.

Current Directory. The directory that contains the file(s) you are currently using. A filespec

that does not begin with a slash specifies either a standard device (such as CONI or REMOQ)
or a file in the current directory. The operating system USER command selects a new current

syste 1d selects a new current
directory.

Data Item. A byte or sequence of bytes of object code that contains data other than machine
instructions. A data item is defined by an ASClH, BLOCK, BYTE, or WORD directive.

Default. A predefined value for a parameter, used when no value for the parameter is
explicitly specified.

Defined Symbol. A symbol that has been assigned a value.
Directive. An assembly language statement that does not represent a machine instruction

but does provide special information to the assembler. Also called a pseudo-operation,
pseudo-instruction, or quasi-instruction.

14-2 REV A FEB 1981

Glossary—8500 MDL A Series Assembler Users
S

Directory. A file that may contain only pointers to other files. A file that is not a directory is
called a data file. A file that is pointed to by a directory is said to reside in the directory; every
file resides in at least one directory. Likewise, a directory is said to contain each file it points
to. The operating system CREATE command creates a new directory.

DOS/50. The Disc Operating System of the 8550 Microcomputer Development Lab.
End Address. The address of the last byte in a section.

Expression. A formula that contains symbols, constants, or functions related by operators,
and yields a numeric or string value when evaluated. Symbols, constants, and functions are
themselves trivial expressions.

Filespec. A sequence of names, separated by slashes, that defines a path to a file. A file that
is pointed to by the current directory may be specified with a single name.

Formal Parameter. See Parameter.

Forward Reference. Use of a symbol that is not defined until later in the current source
module.

Function, Assembler. A predefined function that may be used in assembly language
expressions. An assembler function has the form func(expr), where func is the name of the
function and expr is one or more expressions separated by commas.

Global (or Global Symbol). A symbol that is assigned a value in one module and referred to
in another. A bound globa! is defined in the current module. An unbound global is undefined
in the current module; its value must be supplied by another module or by the linker
command DEFINE.

o
M
g
3]
[«
3
-
>

H he base 16 numberin

through 9, and the letters A through F to renresent the dec;mal values 10 through 15 A
hexadecima! constant in an assembly language program requires the suffix H and begins
with a decimal digit to distinguish it from a symbol. For example, the decimal number 29 may

be written as 1DH. The decima! number 15 may be written as OFH (but not FH).

Inpage-Relocatable. See Relocatable.

Instruction. A machine instruction is a sequence of bytes that directs a microprocessor to
perform an elementary operation such as load, store, add, or branch. An assembly language
instruction is an alphanumerlc representatlon of a machine mstructlon The assembler

temmalatan an ann~ lnm~iinma ina imt
U

traridiatcos ai assei IIUIy larigyuayc ulou ubuun in

interactive invocation. A method of invoking the linker or library generator. When you enter

the LINK command without parameters, or the LIBGEN command without specifying a
command file, you must enter further linker or library generator commands from the system
terminal.

Label. A symbol that represents an address, variable, or constant in an assembly language
program.

REV A FEB 1981 14-3

Glossary—=8500 MDL A Series Assembler Users

S O

Library. A collection of object modules that usually contains commonly-used subroutines.
You may include calls to library routines in your source program; the linker includes the
necessary object modules in the load file.

Library Generator (LibGen). The system program used to create and maintain libraries of
object modules.

Linker. The system program that combines object modules into a single executable load file.

Listing. A file or printout that summarizes the actions of a program such as the assembler,
linker, or library generator.

Local. Not global. In an assembly language program, a local symbol is referenced only by
statements in the same source module.

Location Counter. An internal counter maintained by the assembler that marks the location,
relative to the beginning of the section, of the next machine instruction to be assembled. A
symbol in the label field of an assembly language statement is usually assigned the current
value of the location counter.

Machine Instruction. See Instruction.

Machine Language. The binary language of a microprocessor. A high-level or assembly
language program must be translated into machine instructions before the microprocessor
can execute the program. Relocatable machine language produced by the assembler may
require adjustment by the linker in order for the instructions to execute properly.

Macro. A frequently-used group of assembler statements that are inserted into the program
at assembly time wherever the macro is invoked.

Macro Definition. A group of assembler statements that define a macro. A macro definition
begins with a MACRO directive and ends with an ENDM directive. Statements in the macro
definition may contain formal parameters, which are replaced with actual parameters

wherever the macro is inveked.

Macro Expansion. The process of replacing a macro invocation with the macro definition
block it invokes.

Macro Invocation. An assembler statement containing the name of a macro in the operation
field and, optionally, a list of actual parameters in the operand field.

Mnemonic. A symbol that represents a machine instruction. Usually the symbol is an
abbreviation that suggests the machine operation to be performed. For example, the 8080A
mnemonic MOV represents a machine instruction that moves a value into a register.

Module. A program unit that is complete for purposes of assembling, linking, or loading. It
may be combined with other modules to produce a complete program. An object module
contains all the object code produced in a single assembler run. A source module is a set of
assembly language statements (ending with an END directive or an end-of-file) that produces
an object module when assembled.

14-4 REV A FEB 1981

Glossary—8500 MDL A Series Assembler Users
ﬂ

Nest. (1) To include a block of assembly language statements inside another biock of
statements of the same type. (2) To include a subexpression within an expression.

Null String. An empty character string without quotes: nothing.

Object Code. Machine language produced by the assembler from source statements. An
object module contains one or more sections of object code, plus special information used
by the linker, library generator, or LOAD command. An object file is a file that contains an
object module.

Octal. The base 8 numbering system. The eight octal digits are O through 7. An octal
constant in an assembly language program requires the suffix letter O or Q. For example, the
decimal number 29 may be written as 350 or 35Q.

Operand. A number or other value on which an operation is performed. The expression X + 3
performs an add operation on the operands X and 3. The assembly language statement LDA
NUM1 performs a load operation on the byte addressed by the operand NUM1.

Operator. A character or symbol that represents an operation to be performed on one or
more operands. Operators used in assembly language programs are:

* / + - MOD (arithmetic)
\ & I I SHL SHR (bit manipulation)
= < <= > >= <> (relational)

(string concatenation)

Page. A subdivision of memory. Page size is processor-dependent and reflects addressing
considerations. For example, in a 64K memory with 256-byte pages, the high-order byte of a
16-bit address selects one of the 256 pages and the low-order byte of the address selects a
byte within that page.

Page-Relocatable. See Relocatable.

Parameter. In an operating system command, a parameter is a name or number that follows
the command word and tells something about how the command is to be executed.

in an assembler macro, a parameter is a value that remains undefined until the macro is
invoked. A formal parameter is a place holder in a macro definition block; the first formal
parameter is written as ‘1’, the second as '2’, and so on. An actual parameter is a character
parameter in the macro block. "Parameter” may refer to either a formal parameter or an

ITE-}. +
actual parameler.

Program Memory. The microcomputer development lab memory used as a substitute for
prototype memory in the early stages of prototype development {emulation modes O and 1).
User programs run in program memory, as do the assembler, linker, library generator, and
certain other system programs.

REV A FEB 1981 14-5

Relocatable. A relocatable section is a section whose location in memory is not determined
until link time. A page-relocatable section must begin on a page boundary, an inpage-
relocatable section may not cross page boundaries; a byte-relocatable section may be
positioned anywhere in memory; an absolute section must start at a specified address.

Reserved Word. A predefined symbol that has a special meaning to the assembler and may
not be used as a label, section name, or module name. Reserved words include mnemonics,
register names, and assembler directives and functions.

Return. The RETURN character (ASClH code 13), also called CR or carriage return. This
character marks the end of a command or an assembly language statement.

Scalar. A 16-bit signed numeric value not used as an address. A scalar takes a value in the
range -32768 to +32767.

Section. A section of object code is a block of contiguous bytes, and is the fundamental,
indivisible unit handled by the linker. A section of source code comprises the statements
that will produce a section of object code when they are assembled. Each section of source
code begins with a SECTION, COMMON, or RESERVE directive.

Simple Invocation. A method of invoking the linker in which all actions to be taken by the
linker are specified in the LINK command line.

Source Code. Program statements written in assembly language. A source module is a set
of source statements (ending with an END directive or an end-of-file) that produces an object
module when assembled. A source file is a file containing all or part of a source module.

Start Address. The address of the base, or first byte, of a section.

String. A sequence of ASCI characters. A string enclosed in quotes (for example,
"ELEPHANT") is called a string constant.

Symboi. A siring of one to eight characters beginning with a ietter and containing only
letters, digits, periods, underscores, or dollar signs. Predefined symbols include assembler
directives and functions, mnemonics, and register names. User-defined symbols represent
addresses, data items, variables, macros, sections, or modules.

Transfer Address. The address of the first machine instruction to be executed in a load file.
A transfer address may be specified in the END statement of a source module or in the linker
command TRANSFER.

Unbound Global. See Global.

Variable. In an assembly language program, a value that may be altered during assembly.
The SET directive creates or redefines a variable.

14-6 REV A FEB 1981

8500 MDL A Series Assembler Users

20—

Section 15
INDEX

A
Absolute, defined, 14-1

Absolute (relocation type), 2-8, 5-6, 5-40
Actual parameter, defined, 14-5
Address, defined, 14-1
Address values, 4-8, 4-18
Addressing modes, section 12
AFTER (LibGen parameter), 8-14
Allocation of sections, 7-6
Arithmetic operators, 4-14
ASCIll codes (hexadecimal), table of, 10-5
ASCIl directive, 5-3

sample usage, 3-17
ASM command, 3-3
Assembler:

demonstration, 1-16, 1-22

execution, 3-5

features, 1-4

input, 3-4

invoking the, 2-2, 3-3

macro. See Macro

variable, 4-9
Assembler directives, section 5

defined, 4-3, 14-3

labels for, 5-2

list of, 10-3

Assembler listing:
explanation of, 3-6
example, i-19, 1-23, 3-8
headings, 5-46, 5-49
options, 5-23
statistics, 3-7, 3-18
Assembler specifics, explanation, 1-1, section 12
Assembly:
combining source files during, 2-2
conditional:
blocks, 3-13, 5-19, 5-34
defined, 14-2
example of, 9-38
Assembly language, defined, 14-1
Assembly tanguage instructions:
defined, 4-3, 14-4
notational conventions for, section 12

B

BASE:
assembler function, 4-20
linker option, 7-21

Base, defined, 14-1

BEFORE (LibGen parameter), 8-14
Binary, defined, 14-1

Bit, defined, 14-1

BLOCK directive, 5-4
sample usage, 3-15

Bound global:
description, 5-17
defined, 14-3

Byte-relocatable, defined, 14-6
“Bytes available” message, 1-17, 3-7

REV A FEB 1981

C

Characters, special:
@ (at sign):
LibGen command, 8-10
linker command, 7-15
macro construct, 6-4, 9-41
using the, 9-41
$ (dollar sign), 4-8
% (percent sign), 4-11, 6-5
(pound sign), 6-4
A (up arrow), 6-5
disabling significance of, 6-5
CND (listing option), 5-24
Code, defined, 14-1
Command file, defined, 4-1, 14-2

Command file invocation:

defined, 14-2

LibGen, 8-1, 8-4, 8-10

linker, 7-1, 7-15
Command name, 3-2
Comment, defined, 14-2
Comment field, 4-5
COMMON directive, 5-6

sample usage, 3-15
Common section, 5-6
CON ({listing option), 5-25
Concatenation:

defined, 14-2

string, 4-19
Conditional assembly. See Assembly, conditional
Constant:

defined, 14-2

numeric, 4-8, 14-2

string, 4-9, 14-2
Constant values, example of creating, 9-32
Converter, defined, 14-2

<CR> (carriage return), 1-8
defined, 14-7

Current directory, defined, 14-2

D

Data item, defined, 14-2

DBG (listing option), 5-25
Decimal-hexadecimal-binary equivalents, table of,

1iNn_c
1U-C

DEF function, 4-22

Defauit, defined, 14-3

Default section, 3-18, 5-41

DEFINE (linker command), 7-16

DELETE (LibGen command), 8-11
Demonstration run, 1-8

Directive, defined, 14-2

Directory, defined, 14-3

DOS/50, defined, 14-3

DOS/50 SVC generation, example of, 9-27

15-1

Index—8500 MDL A Series Assembler Users

E
Editor demonstration, 1-14
ELSE directive, 5-10
END:
directive, 5-11
LibGen command, 8-12
linker command, 7-17
End address, defined, 14-3
ENDIF directive, 5-12
ENDM directive, 5-13, 6-2, 6-6
ENDOF function, 4-23
ENDR directive, 5-14
ENDREL, 7-7
Entry point, 5-17
EQU directive, 5-15
sample usage, 3-14
Error messages:
assembler, 1-16
LibGen, 8-7
linker, 7-11, 7-27
processor-specific, section 12
user-defined, 5-50
sample usage, 3-13
Errors, assembler, 3-7
example of, 3-14,
Executable object code, 1-28
Execution, assembler, 3-5
EXITM directive, 5-16
Expression, 4-12, 14-3
EXTRACT LibGen command, 8-13

F

Field:
comment, 4-5
defined, 1-8, 4-4
label, 4-2
operand, 4-4
operation, 4-3
File naming, 1-13
Filespec, defined, 14-3
Formal parameter, defined, 14-5

Forward reference:
defined, 14-3
use of, 3-5

Functions, assembler:
defined, 14-3
description, 4-19
table of, 4-12

G

Global:
bound, 5-17
defined, 14-3
example of, 5-18
unbound, 5-17

GLOBAL directive, 5-17
sample usage, 3-14

Global symbols list, 7-9
example of 1-26

H

Hexadecimal, defined, 14-3

Hexadecimal addition, table of, 10-7
Hexadecimal multiplication, table of, 10-8

HI function, 4-24
sample usage, 3-13

|
IF directive, 5-19
IF...ELSE.. ENDIF block, 5-19

IF...ENDIF block, 5-19
sample usage, 3-13

INCLUDE directive:
description, 5-22
using the, 9-42

INPAGE:
linker option, 7-21
relocation type, 5-6, 5-37, 5-40

Input, assembler, 3-4

INSERT (LibGen command), 8-14

Installation, assembler software, 1-6, section 12
Instruction set, processor, section 12

Interactive invocation:
defined, 14-3
LibGen, 8-1, 8-2
linker, 7-1, 7-3

Internal symbol list, 5-25, 7-9

L
Label, defined, 14-3
Label field, 4-2
Label generation, unique ('@’), 6-4
Labels for assembler directives, 5-2
LibGen:
command entry, terminating, 8-12
command file, invoking a, 8-4, 8-10
commands, use of, 8-9
error messages, 8-7
execution of, 8-5
features, 1-5
interactive commands:
@, 8-10
DELETE, 8-11
END, 8-12
EXTRACT, 8-13
INSERT, 8-14
LIST, 8-16
LOG, 8-17
NEWLIB, 8-18
NOLOG, 8-19
OLDLIB, 8-20
REPLACE, 8-21
invocation:
command file, 8-4, 8-10
interactive, 8-1, 8-2
library file, 8-5
listing, 8-5
output, 8-5
using. 2-10
Libraries, combining, 2-14

REY A FEB 1981

Index—8500 MDL A Series Assembler Users

Library:
building a, 2-10
creating a user-defined, 2-11
defined, 14-4

Library file:
as LibGen output, 8-6
linking a, 7-7

Library generator. See LibGen

Library module:
adding a new, 2-12
deleting a, 8-11
extracting a, 2-13, 8-13
replacing a, 2-13,

LINK (linker command), 7-18
LINK (DOS/50 command), 7-1

Linker:
command processing errors, 7-27
commands, use of, 7-14
demonstration, 1-25
error messages, 7-11
execution, 7-5
features, 1-5
interactive commands:
@, 7-15
DEFINE, 7-16
END, 7-17
LINK, 7-18
LIST, 7-19
LOAD, 7-20
LOCATE, 7-21
LOG, 7-22, 7-24
MAP, 7-23
NOLOG, 7-24
NOMAP, 7-23, 7-25
TRANSFER, 7-26
invocation:
command file, 7-1, 7-4
interactive, 2-5, 7-1, 7-3
simple, 2-4, 7-1, 7-2
listing file, 7-8
maps, 7-10
memory, 1-27, 7-10
module, 1-27, 7-10
output, 7-8
statistics, 7-11
Linker listing:
displaying internal symbols in the, 2-3
exampie of, 1-26
Linking a program, 2-4
Linking to a library file, 7-7
Linking to an address range, 2-7
LIST:
directive, 5-23
sample usage, 3-12
LibGen command, 8-16
linker command, 7-19
Listing:
assembiler:
example of, 3-8
explanation of, 3-6
headings for assembler, 5-46, 5-49
LibGen, 8-6

source, 3-6
See also Assembler listing

LO function, 4-25

LOAD:
linker command, 7-20
DOS/50 command, 1-28

Local, defined, 14-4
LOCATE (linker command), 7-21

REV A FEB 1981

Location counter:
agefined, 14-4
described, 4-8
setting the, 5-30
LOG:
LibGen command, 8-17
linker command, 7-22, 7-24

Logical operators, 4-16

M
Machine instruction, defined, 14-4
Machine language, defined, 14-4
Macro:
assembly of, 3-5
body, 6-3
defined, 6-1, 14-4
examples of, 3-13, 6-11, 9-2, 9-27
expansion:
defined, 6-2, 14-4
display of statements in, 5-24
invocation, defined, 4-4, 6-2, 6-6, 14-4
operators, 6-3
parameter:
access, 6-4
conventions, 6-6
sample usage, 3-16
MACRO directive, 5-27, 6-2
Manual overview, 1-1, 1-27
MAP (linker command), 7-23
ME (listing option), 5-24
sample usage, 3-17
MEG (listing option), 5-24
Memory, reserving an area of, 2-8, 5-4, 5-37
Memory map:
description, 7-10
example of, 1-26
Memory-mapped 1/0, 2-9
Mnemonic, defined, 14-4
Mnemonics, processor, section 12
MOD operator, 4-14

Module:
defined, 14-4
object, 3-6

Module map:
description, 7-10
example of, 1-24

N
NAME directive, 5-28
NCHR function, 4-26
Nest, defined, 14-5
Nesting conventions for assembly language
statements, 5-20, 5-35
NEWLIB (LibGen command), 8-18
NOLIST directive, 5-29
NOLOG:
LibGen command, 8-19
linker command, 7-24
NOMAP (linker command), 7-23, 7-25
NONAME, 5-28
Nuil string, defined, 14-5
Numeric values, 4-7
Numeric variable, 4-9, 5-42

15-3

Index—8500 MDL A Series Assembler Users

(o]

Object code:
defined, 14-5
example of, 3-8
executable, 1-28
relocatable, 1-28

Object file, defined, 14-5

Object module:
defined, 14-5
description of, 3-6
name of, 5-28

Octal, defined, 14-5

OLDLIB (LibGen command), 8-20

Operand:
defined, 14-5
use of, 4-4

Operand field, 4-4
Operation field, 4-3

Operators:
arithmetic, 4-14
defined, 4-13, 14-5
hierarchy of, 4-13
logical, 4-16
relational, 4-17
string, 4-19
table of, 4-12

ORG directive, 5-30
Overview of manual, 1-1, 1-30
Overview of programming process. 1-2

P

PAGE:
directive, 5-33
linker option, 7-21
relocation type, 5-6, 5-37, 5-40

Page (of memory), defined, 14-5
Page size, processor, section 12
Page-relocatable, defined, 14-6
Parameter, defined, 3-2, 14-5
Parameter count (macro), 6-4
Passes, assembler, 3-5

Procedures, 2-1

Program memory, defined, 14-5
Program modules, example of, 1-10
Program section, 5-40

Programming process:
figure, 1-3
overview of, 1-2

R
RANGE (linker option), 2-7, 7-21
Register names, section 12

Relational operators, 4-17
comparison table, 4-8

Relocatable, defined, 14-6
Relocatable address, 4-8
Relocatable object code, 1-25

Relocation indicator, 3-6
example of, 3-14

Relocation of sections, example of, 5-31
REPEAT directive, 5-34

15-4

REPEAT..ENDR block, 5-34
REPLACE (LibGen command), 8-21
RESERVE directive, 5-37

Reserve section, 5-37, 7-5
Reserved words, section 12, 14-6
RESUME directive, 5-39

Return character, 14-6

S

Scalar, defined, 14-6
SCALAR function, 4-27
Scalar values, 4-7, 4-17

Section:
allocation of, 7-6
attributes, 7-5
defined, 14-6
examples of, 1-9, 5-32

SECTION directive, 5-40
sample usage, 3-14

Section name, determining current, 6-5
SEG function, 4-28

Semicolon (comment), 4-5
sample usage, 3-12

Service call (SVC) generation, example of, 9-27
Service request blocks, example of creating, 9-27

SET directive, 4-10, 4-11, 5-42
sample usage, 3-12

SHL (shift left) function, 4-15
SHR (shift right) function, 4-15
Simple invocation, defined, 14-6
Source code, defined, 14-6
Source file, alternate, 5-22
Source file, defined, 14-6

Source listing:
description, 3-6
display of statements in, 5-24
example of, 1-19, 3-8

Source module, defined, 14-6
Source module character set, 10-1
Source program, example of, 3-11
SPACE directive, 5-45

Stack, aliocating memory for, 5-38
Start address, defined, 14-6
Statement fields, 1-11, 4-1
Statement types, 1-10
Statements, 4-1

STITLE directive, 5-46

String, defined, 14-6

String constant, 4-9

String conversions, 4-12

STRING directive, 4-10, 5-48
sample usage, 3-12

STRING function, 4-29
String operator, 4-21
String values, 4-9, 4-18

String variable, 3-12, 4-10, 4-11, 5-42, 5-48
sample usage, 3-12

Subroutine library, example of creating and using
a, 9-6

REV A FEB 1981

8500 MDL A Series Assembler Users

#

Summary of action. See LibGen listing Transfer address, defined, 5-11, 14-6
SVC generation, example of, 9-27 TRM (listing option), 5-25
SYM (listing option), 5-25 sample usage, 3-12
Symbol: Two passes of the assembler, 3-5
assigning value to, 4-6, 5-2, 5-1b, 5-42 Type conversion, 5-42
defined, 14-6

deseription, 4-6
predefined, 4-7
undefined, example of, 3-18

user-defined, 4-2, 4-6 U
Symbol list. See LibGen listing Unbound global, defined, 5-17, 14-3
Symbol table: Underlined characters in examples, 1-8
description, 3-7 ; ; .
controlling display of, 5-26 Unique IAabeI generation, 6-4
example of, 1-19, 3-10 User-defined error messages, 5-50

Syntax notation, 3-1
for assembler directives, 5-1

System overview, 1-1
\'
Variable:
defined, 5-42, 14-6
numeric, 4-9, 5-42
T string, 4-10, 5-42, 5-48
Terminating LibGen command entry, 8-14 sample usage, 3-12
Text substitution, 3-5, 4-5, 4-13, 5-43
Text substitution indicator, 3-5
example of, 3-16 w

TITLE directive, 5-49 ; :
4 WARNING directive, 5-50
sample usage, 3-12 sample u|sage, 3-13

TRANSFER (linker command), 7-26 WORD directive, 5-51

REV A FEB 1981 15-5

	0001
	0002
	001
	002
	01-001
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	02-001
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	03-001
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	04-001
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-001
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	06-001
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	07-001
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	08-001
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	09-001
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	10-001
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	12-01
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05

